返回介绍

solution / 0000-0099 / 0072.Edit Distance / README_EN

发布于 2024-06-17 01:04:40 字数 6409 浏览 0 评论 0 收藏 0

72. Edit Distance

中文文档

Description

Given two strings word1 and word2, return _the minimum number of operations required to convert word1 to word2_.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

 

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

 

Constraints:

  • 0 <= word1.length, word2.length <= 500
  • word1 and word2 consist of lowercase English letters.

Solutions

Solution 1: Dynamic Programming

We define $f[i][j]$ as the minimum number of operations to convert $word1$ of length $i$ to $word2$ of length $j$. $f[i][0] = i$, $f[0][j] = j$, $i \in [1, m], j \in [0, n]$.

We consider $f[i][j]$:

  • If $word1[i - 1] = word2[j - 1]$, then we only need to consider the minimum number of operations to convert $word1$ of length $i - 1$ to $word2$ of length $j - 1$, so $f[i][j] = f[i - 1][j - 1]$;
  • Otherwise, we can consider insert, delete, and replace operations, then $f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1$.

Finally, we can get the state transition equation:

$$ f[i][j] = \begin{cases} i, & \text{if } j = 0 \ j, & \text{if } i = 0 \ f[i - 1][j - 1], & \text{if } word1[i - 1] = word2[j - 1] \ \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1, & \text{otherwise} \end{cases} $$

Finally, we return $f[m][n]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. $m$ and $n$ are the lengths of $word1$ and $word2$ respectively.

class Solution:
  def minDistance(self, word1: str, word2: str) -> int:
    m, n = len(word1), len(word2)
    f = [[0] * (n + 1) for _ in range(m + 1)]
    for j in range(1, n + 1):
      f[0][j] = j
    for i, a in enumerate(word1, 1):
      f[i][0] = i
      for j, b in enumerate(word2, 1):
        if a == b:
          f[i][j] = f[i - 1][j - 1]
        else:
          f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
    return f[m][n]
class Solution {
  public int minDistance(String word1, String word2) {
    int m = word1.length(), n = word2.length();
    int[][] f = new int[m + 1][n + 1];
    for (int j = 1; j <= n; ++j) {
      f[0][j] = j;
    }
    for (int i = 1; i <= m; ++i) {
      f[i][0] = i;
      for (int j = 1; j <= n; ++j) {
        if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
          f[i][j] = f[i - 1][j - 1];
        } else {
          f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1;
        }
      }
    }
    return f[m][n];
  }
}
class Solution {
public:
  int minDistance(string word1, string word2) {
    int m = word1.size(), n = word2.size();
    int f[m + 1][n + 1];
    for (int j = 0; j <= n; ++j) {
      f[0][j] = j;
    }
    for (int i = 1; i <= m; ++i) {
      f[i][0] = i;
      for (int j = 1; j <= n; ++j) {
        if (word1[i - 1] == word2[j - 1]) {
          f[i][j] = f[i - 1][j - 1];
        } else {
          f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1;
        }
      }
    }
    return f[m][n];
  }
};
func minDistance(word1 string, word2 string) int {
  m, n := len(word1), len(word2)
  f := make([][]int, m+1)
  for i := range f {
    f[i] = make([]int, n+1)
  }
  for j := 1; j <= n; j++ {
    f[0][j] = j
  }
  for i := 1; i <= m; i++ {
    f[i][0] = i
    for j := 1; j <= n; j++ {
      if word1[i-1] == word2[j-1] {
        f[i][j] = f[i-1][j-1]
      } else {
        f[i][j] = min(f[i-1][j], min(f[i][j-1], f[i-1][j-1])) + 1
      }
    }
  }
  return f[m][n]
}
function minDistance(word1: string, word2: string): number {
  const m = word1.length;
  const n = word2.length;
  const f: number[][] = Array(m + 1)
    .fill(0)
    .map(() => Array(n + 1).fill(0));
  for (let j = 1; j <= n; ++j) {
    f[0][j] = j;
  }
  for (let i = 1; i <= m; ++i) {
    f[i][0] = i;
    for (let j = 1; j <= n; ++j) {
      if (word1[i - 1] === word2[j - 1]) {
        f[i][j] = f[i - 1][j - 1];
      } else {
        f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
      }
    }
  }
  return f[m][n];
}
/**
 * @param {string} word1
 * @param {string} word2
 * @return {number}
 */
var minDistance = function (word1, word2) {
  const m = word1.length;
  const n = word2.length;
  const f = Array(m + 1)
    .fill(0)
    .map(() => Array(n + 1).fill(0));
  for (let j = 1; j <= n; ++j) {
    f[0][j] = j;
  }
  for (let i = 1; i <= m; ++i) {
    f[i][0] = i;
    for (let j = 1; j <= n; ++j) {
      if (word1[i - 1] === word2[j - 1]) {
        f[i][j] = f[i - 1][j - 1];
      } else {
        f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
      }
    }
  }
  return f[m][n];
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文