返回介绍

solution / 2100-2199 / 2106.Maximum Fruits Harvested After at Most K Steps / README_EN

发布于 2024-06-17 01:03:10 字数 6325 浏览 0 评论 0 收藏 0

2106. Maximum Fruits Harvested After at Most K Steps

中文文档

Description

Fruits are available at some positions on an infinite x-axis. You are given a 2D integer array fruits where fruits[i] = [positioni, amounti] depicts amounti fruits at the position positioni. fruits is already sorted by positioni in ascending order, and each positioni is unique.

You are also given an integer startPos and an integer k. Initially, you are at the position startPos. From any position, you can either walk to the left or right. It takes one step to move one unit on the x-axis, and you can walk at most k steps in total. For every position you reach, you harvest all the fruits at that position, and the fruits will disappear from that position.

Return _the maximum total number of fruits you can harvest_.

 

Example 1:

Input: fruits = [[2,8],[6,3],[8,6]], startPos = 5, k = 4
Output: 9
Explanation: 
The optimal way is to:
- Move right to position 6 and harvest 3 fruits
- Move right to position 8 and harvest 6 fruits
You moved 3 steps and harvested 3 + 6 = 9 fruits in total.

Example 2:

Input: fruits = [[0,9],[4,1],[5,7],[6,2],[7,4],[10,9]], startPos = 5, k = 4
Output: 14
Explanation: 
You can move at most k = 4 steps, so you cannot reach position 0 nor 10.
The optimal way is to:
- Harvest the 7 fruits at the starting position 5
- Move left to position 4 and harvest 1 fruit
- Move right to position 6 and harvest 2 fruits
- Move right to position 7 and harvest 4 fruits
You moved 1 + 3 = 4 steps and harvested 7 + 1 + 2 + 4 = 14 fruits in total.

Example 3:

Input: fruits = [[0,3],[6,4],[8,5]], startPos = 3, k = 2
Output: 0
Explanation:
You can move at most k = 2 steps and cannot reach any position with fruits.

 

Constraints:

  • 1 <= fruits.length <= 105
  • fruits[i].length == 2
  • 0 <= startPos, positioni <= 2 * 105
  • positioni-1 < positioni for any i > 0 (0-indexed)
  • 1 <= amounti <= 104
  • 0 <= k <= 2 * 105

Solutions

Solution 1

class Solution:
  def maxTotalFruits(self, fruits: List[List[int]], startPos: int, k: int) -> int:
    ans = i = s = 0
    for j, (pj, fj) in enumerate(fruits):
      s += fj
      while (
        i <= j
        and pj
        - fruits[i][0]
        + min(abs(startPos - fruits[i][0]), abs(startPos - fruits[j][0]))
        > k
      ):
        s -= fruits[i][1]
        i += 1
      ans = max(ans, s)
    return ans
class Solution {
  public int maxTotalFruits(int[][] fruits, int startPos, int k) {
    int ans = 0, s = 0;
    for (int i = 0, j = 0; j < fruits.length; ++j) {
      int pj = fruits[j][0], fj = fruits[j][1];
      s += fj;
      while (i <= j
        && pj - fruits[i][0]
            + Math.min(Math.abs(startPos - fruits[i][0]), Math.abs(startPos - pj))
          > k) {
        s -= fruits[i++][1];
      }
      ans = Math.max(ans, s);
    }
    return ans;
  }
}
class Solution {
public:
  int maxTotalFruits(vector<vector<int>>& fruits, int startPos, int k) {
    int ans = 0, s = 0;
    for (int i = 0, j = 0; j < fruits.size(); ++j) {
      int pj = fruits[j][0], fj = fruits[j][1];
      s += fj;
      while (i <= j && pj - fruits[i][0] + min(abs(startPos - fruits[i][0]), abs(startPos - pj)) > k) {
        s -= fruits[i++][1];
      }
      ans = max(ans, s);
    }
    return ans;
  }
};
func maxTotalFruits(fruits [][]int, startPos int, k int) (ans int) {
  var s, i int
  for j, f := range fruits {
    s += f[1]
    for i <= j && f[0]-fruits[i][0]+min(abs(startPos-fruits[i][0]), abs(startPos-f[0])) > k {
      s -= fruits[i][1]
      i += 1
    }
    ans = max(ans, s)
  }
  return
}

func abs(x int) int {
  if x < 0 {
    return -x
  }
  return x
}
function maxTotalFruits(fruits: number[][], startPos: number, k: number): number {
  let ans = 0;
  let s = 0;
  for (let i = 0, j = 0; j < fruits.length; ++j) {
    const [pj, fj] = fruits[j];
    s += fj;
    while (
      i <= j &&
      pj -
        fruits[i][0] +
        Math.min(Math.abs(startPos - fruits[i][0]), Math.abs(startPos - pj)) >
        k
    ) {
      s -= fruits[i++][1];
    }
    ans = Math.max(ans, s);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文