- 第 1 章 安装 Python
- 1.2. Windows 上的 Python
- 1.3. Mac OS X 上的 Python
- 1.4. Mac OS 9 上的 Python
- 1.5. RedHat Linux 上的 Python
- 1.6. Debian GNU/Linux 上的 Python
- 1.7. 从源代码安装 Python
- 1.8. 使用 Python 的交互 Shell
- 1.9. 小结
- 第 2 章 第一个 Python 程序
- 2.2. 函数声明
- 2.3. 文档化函数
- 2.4. 万物皆对象
- 2.5. 代码缩进
- 2.6. 测试模块
- 第 3 章 内置数据类型
- 3.2. List 介绍
- 3.3. Tuple 介绍
- 3.4. 变量声明
- 3.5. 格式化字符串
- 3.6. 映射 list
- 3.7. 连接 list 与分割字符串
- 3.8. 小结
- 第 4 章 自省的威力
- 4.2. 使用可选参数和命名参数
- 4.3. 使用 type、str、dir 和其它内置函数
- 4.4. 通过 getattr 获取对象引用
- 4.5. 过滤列表
- 4.6. and 和 or 的特殊性质
- 4.7. 使用 lambda 函数
- 4.8. 全部放在一起
- 4.9. 小结
- 第 5 章 对象和面向对象
- 5.2. 使用 from module import 导入模块
- 5.3. 类的定义
- 5.4. 类的实例化
- 5.5. 探索 UserDict: 一个封装类
- 5.6. 专用类方法
- 5.7. 高级专用类方法
- 5.8. 类属性介绍
- 5.9. 私有函数
- 5.10. 小结
- 第 6 章 异常和文件处理
- 6.2. 与文件对象共事
- 6.3. for 循环
- 6.4. 使用 sys.modules
- 6.5. 与 Directory 共事
- 6.6. 全部放在一起
- 6.7. 小结
- 第 7 章 正则表达式
- 7.2. 个案研究:街道地址
- 7.3. 个案研究:罗马字母
- 7.4. 使用{n,m} 语法
- 7.5. 松散正则表达式
- 7.6. 个案研究: 解析电话号码
- 7.7. 小结
- 第 8 章 HTML 处理
- 8.2. sgmllib.py 介绍
- 8.3. 从 HTML 文档中提取数据
- 8.4. BaseHTMLProcessor.py 介绍
- 8.5. locals 和 globals
- 8.6. 基于 dictionary 的字符串格式化
- 8.7. 给属性值加引号
- 8.8. dialect.py 介绍
- 8.9. 全部放在一起
- 8.10. 小结
- 第 9 章 XML 处理
- 9.2. 包
- 9.3. XML 解析
- 9.4. Unicode
- 9.5. 搜索元素
- 9.6. 访问元素属性
- 9.7. Segue
- 第 10 章 Scripts 和 Streams
- 10.2. 标准输入、输出和错误
- 10.3. 缓冲节点查询
- 10.4. 查找节点的直接子节点
- 10.5. 通过节点类型创建独立的处理句柄 Creating separate handlers by node type
- 10.6. 处理命令行参数
- 10.7. 全部放在一起
- 10.8. 小结
- 第 11 章 HTTP Web 服务
- 11.2. 避免通过 HTTP 重复地获取数据
- 11.3. HTTP 的特性
- 11.4. 调试 HTTP web 服务
- 11.5. 设置 User-Agent
- 11.6. 处理 Last-Modified 和 ETag
- 11.7. 处理重定向
- 11.8. 处理被压缩的数据
- 11.9. 全部放在一起
- 11.10. 小结
- 第 12 章 SOAP Web 服务
- 12.2. 安装 SOAP 库
- 12.3. 步入 SOAP
- 12.4. SOAP 网络服务查错
- 12.5. WSDL 介绍
- 12.6. 以 WSDL 进行 SOAP 内省
- 12.7. 搜索 Google
- 12.8. SOAP 网络服务故障排除
- 12.9. 小结
- 第 13 章 单元测试
- 13.2. 深入
- 13.3. 介绍 romantest.py
- 13.4. 正面测试(Testing for success)
- 13.5. 负面测试(Testing for failure)
- 13.6. 完备性检测(Testing for sanity)
- 第 14 章 以测试优先为原则的编程
- 14.2. roman.py, 第 2 阶段
- 14.3. roman.py, 第 3 阶段
- 14.4. roman.py, 第 4 阶段
- 14.5. roman.py, 第 5 阶段
- 第 15 章 重构
- 15.2. 应对需求变化
- 15.3. 重构
- 15.4. 后记
- 15.5. 小结
- 第 16 章 有效编程(Functional Programming)
- 16.2. 找到路径
- 16.3. 过滤已访问列表
- 16.4. 关联已访问列表
- 16.5. 数据中心思想编程
- 16.6. 动态导入模块
- 16.7. 全部放在一起
- 16.8. 小结
- 第 17 章 动态函数
- 17.2. plural.py, 第 1 阶段
- 17.3. plural.py, 第 2 阶段
- 17.4. plural.py, 第 3 阶段
- 17.5. plural.py, 第 4 阶段
- 17.6. plural.py, 第 5 阶段
- 17.7. plural.py, 第 6 阶段
- 17.8. 小结
- 第 18 章 性能优化
- 18.2. 使用 timeit 模块
- 18.3. 优化正则表达式
- 18.4. 优化字典查找
- 18.5. 优化列表操作
- 18.6. 优化字符串操作
- 18.7. 小结
- 附录 A. 进一步阅读
- 附录 B. 五分钟回顾
- 附录 C. 技巧和窍门
- 附录 D. 示例清单
- 附录 E. 修订历史
- 附录 F. 关于本书
- 附录 G. GNU Free Documentation License
- G.1. Applicability and definitions
- G.2. Verbatim copying
- G.3. Copying in quantity
- G.4. Modifications
- G.5. Combining documents
- G.6. Collections of documents
- G.7. Aggregation with independent works
- G.8. Translation
- G.9. Termination
- G.10. Future revisions of this license
- G.11. How to use this License for your documents
- 附录 H. Python license
- H.B. Terms and conditions for accessing or otherwise using Python
18.2. 使用 timeit 模块
18.2. 使用 timeit 模块
关于 Python 代码优化你需要知道的最重要问题是,决不要自己编写计时函数。
为一个很短的代码计时都很复杂。 处理器有多少时间用于运行这个代码? 有什么在后台运行吗? 每个现代计算机都在后台运行持续或者间歇的程序。 小小的疏忽可能破坏你的百年大计,后台服务偶尔被 “唤醒” 在最后千分之一秒做一些像查收信件,连接计时通信服务器,检查应用程序更新,扫描病毒,查看是否有磁盘被插入光驱之类很有意义的事。 在开始计时测试之前,把一切都关掉,断开网络的连接。再次确定一切都关上后关掉那些不断查看网络是否恢复的服务等等。
接下来是计时框架本身引入的变化因素。 Python 解释器是否缓存了方法名的查找? 是否缓存代码块的编译结果? 正则表达式呢? 你的代码重复运行时有副作用吗? 不要忘记,你的工作结果将以比秒更小的单位呈现,你的计时框架中的小错误将会带来不可挽回的结果扭曲。
Python 社区有句俗语: “Python 自己带着电池。” 别自己写计时框架。 Python 2.3 具备一个叫做 timeit 的完美计时工具。
例 18.2. 介绍 timeit
如果您还没有下载本书附带的例子程序, 可以 下载本程序和其他例子程序。
>>> import timeit >>> t = timeit.Timer("soundex.soundex('Pilgrim')", ... "import soundex") >>> t.timeit() 8.21683733547 >>> t.repeat(3, 2000000) [16.48319309109, 16.46128984923, 16.44203948912]
timeit 模块定义了接受两个参数的 Timer 类。两个参数都是字符串。 第一个参数是你要计时的语句,这里你计时的是以'Pilgrim'参数调用 Soundex 函数。 传递给 Timer 的第二个参数是为第一个参数语句构建环境的导入语句。 从内部讲, timeit 构建起一个独立的虚拟环境, 手工地执行建立语句(导入 soundex 模块),然后手工地编译和执行被计时语句(调用 Soundex 函数)。 | |
一旦有了 Timer 对象,最简单的事就是调用 timeit(),它调用你的函数一百万次并返回所耗费的秒数。 | |
Timer 对象的另一个主要方法是 repeat(), 它接受两个可选参数。 第一个参数是重复整个测试的次数,第二个参数是每个测试中调用被计时语句的次数。 两个参数都是可选的,它们的默认值分别是 3 和 1000000。 repeat() 方法返回以秒记录的每个测试循环的耗时列表。 |
你可以在命令行使用 timeit 模块来测试一个已存在的 Python 程序,而不需要修改代码。在 http://docs.python.org/lib/node396.html 查看文档中关于命令行选项的内容。 |
注意 repeat() 返回一个时间列表。 由于 Python 计时器使用的处理器时间的微小变化(或者那些你没办法根除的可恶的后台进程),这些时间中几乎不可能出现重复。你的第一想法也许是说:“让我们求平均值获得真实的数据。”
事实上,那几乎是确定错误的。 你的代码或者 Python 解释器的变化可能缩短耗时,那些没办法去处的可恶后台进程或者其他 Python 解释器以外的因素也许另耗时延长。 如果计时结果之间的差异超过百分之几,太多的可变因素使你没法相信结果,如果不是这样则可以取最小值而丢弃其他结果。
Python 有一个方便的 min 函数可以把输入的列表返回成最小值:
>>> min(t.repeat(3, 1000000)) 8.22203948912
timeit 模块只有在你知道那段代码需要优化时使用。 如果你有一个很大的 Python 程序并且不知道你的性能问题所在,到 查看 hotshot 模块。 |
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论