- 第 1 章 安装 Python
- 1.2. Windows 上的 Python
- 1.3. Mac OS X 上的 Python
- 1.4. Mac OS 9 上的 Python
- 1.5. RedHat Linux 上的 Python
- 1.6. Debian GNU/Linux 上的 Python
- 1.7. 从源代码安装 Python
- 1.8. 使用 Python 的交互 Shell
- 1.9. 小结
- 第 2 章 第一个 Python 程序
- 2.2. 函数声明
- 2.3. 文档化函数
- 2.4. 万物皆对象
- 2.5. 代码缩进
- 2.6. 测试模块
- 第 3 章 内置数据类型
- 3.2. List 介绍
- 3.3. Tuple 介绍
- 3.4. 变量声明
- 3.5. 格式化字符串
- 3.6. 映射 list
- 3.7. 连接 list 与分割字符串
- 3.8. 小结
- 第 4 章 自省的威力
- 4.2. 使用可选参数和命名参数
- 4.3. 使用 type、str、dir 和其它内置函数
- 4.4. 通过 getattr 获取对象引用
- 4.5. 过滤列表
- 4.6. and 和 or 的特殊性质
- 4.7. 使用 lambda 函数
- 4.8. 全部放在一起
- 4.9. 小结
- 第 5 章 对象和面向对象
- 5.2. 使用 from module import 导入模块
- 5.3. 类的定义
- 5.4. 类的实例化
- 5.5. 探索 UserDict: 一个封装类
- 5.6. 专用类方法
- 5.7. 高级专用类方法
- 5.8. 类属性介绍
- 5.9. 私有函数
- 5.10. 小结
- 第 6 章 异常和文件处理
- 6.2. 与文件对象共事
- 6.3. for 循环
- 6.4. 使用 sys.modules
- 6.5. 与 Directory 共事
- 6.6. 全部放在一起
- 6.7. 小结
- 第 7 章 正则表达式
- 7.2. 个案研究:街道地址
- 7.3. 个案研究:罗马字母
- 7.4. 使用{n,m} 语法
- 7.5. 松散正则表达式
- 7.6. 个案研究: 解析电话号码
- 7.7. 小结
- 第 8 章 HTML 处理
- 8.2. sgmllib.py 介绍
- 8.3. 从 HTML 文档中提取数据
- 8.4. BaseHTMLProcessor.py 介绍
- 8.5. locals 和 globals
- 8.6. 基于 dictionary 的字符串格式化
- 8.7. 给属性值加引号
- 8.8. dialect.py 介绍
- 8.9. 全部放在一起
- 8.10. 小结
- 第 9 章 XML 处理
- 9.2. 包
- 9.3. XML 解析
- 9.4. Unicode
- 9.5. 搜索元素
- 9.6. 访问元素属性
- 9.7. Segue
- 第 10 章 Scripts 和 Streams
- 10.2. 标准输入、输出和错误
- 10.3. 缓冲节点查询
- 10.4. 查找节点的直接子节点
- 10.5. 通过节点类型创建独立的处理句柄 Creating separate handlers by node type
- 10.6. 处理命令行参数
- 10.7. 全部放在一起
- 10.8. 小结
- 第 11 章 HTTP Web 服务
- 11.2. 避免通过 HTTP 重复地获取数据
- 11.3. HTTP 的特性
- 11.4. 调试 HTTP web 服务
- 11.5. 设置 User-Agent
- 11.6. 处理 Last-Modified 和 ETag
- 11.7. 处理重定向
- 11.8. 处理被压缩的数据
- 11.9. 全部放在一起
- 11.10. 小结
- 第 12 章 SOAP Web 服务
- 12.2. 安装 SOAP 库
- 12.3. 步入 SOAP
- 12.4. SOAP 网络服务查错
- 12.5. WSDL 介绍
- 12.6. 以 WSDL 进行 SOAP 内省
- 12.7. 搜索 Google
- 12.8. SOAP 网络服务故障排除
- 12.9. 小结
- 第 13 章 单元测试
- 13.2. 深入
- 13.3. 介绍 romantest.py
- 13.4. 正面测试(Testing for success)
- 13.5. 负面测试(Testing for failure)
- 13.6. 完备性检测(Testing for sanity)
- 第 14 章 以测试优先为原则的编程
- 14.2. roman.py, 第 2 阶段
- 14.3. roman.py, 第 3 阶段
- 14.4. roman.py, 第 4 阶段
- 14.5. roman.py, 第 5 阶段
- 第 15 章 重构
- 15.2. 应对需求变化
- 15.3. 重构
- 15.4. 后记
- 15.5. 小结
- 第 16 章 有效编程(Functional Programming)
- 16.2. 找到路径
- 16.3. 过滤已访问列表
- 16.4. 关联已访问列表
- 16.5. 数据中心思想编程
- 16.6. 动态导入模块
- 16.7. 全部放在一起
- 16.8. 小结
- 第 17 章 动态函数
- 17.2. plural.py, 第 1 阶段
- 17.3. plural.py, 第 2 阶段
- 17.4. plural.py, 第 3 阶段
- 17.5. plural.py, 第 4 阶段
- 17.6. plural.py, 第 5 阶段
- 17.7. plural.py, 第 6 阶段
- 17.8. 小结
- 第 18 章 性能优化
- 18.2. 使用 timeit 模块
- 18.3. 优化正则表达式
- 18.4. 优化字典查找
- 18.5. 优化列表操作
- 18.6. 优化字符串操作
- 18.7. 小结
- 附录 A. 进一步阅读
- 附录 B. 五分钟回顾
- 附录 C. 技巧和窍门
- 附录 D. 示例清单
- 附录 E. 修订历史
- 附录 F. 关于本书
- 附录 G. GNU Free Documentation License
- G.1. Applicability and definitions
- G.2. Verbatim copying
- G.3. Copying in quantity
- G.4. Modifications
- G.5. Combining documents
- G.6. Collections of documents
- G.7. Aggregation with independent works
- G.8. Translation
- G.9. Termination
- G.10. Future revisions of this license
- G.11. How to use this License for your documents
- 附录 H. Python license
- H.B. Terms and conditions for accessing or otherwise using Python
18.3. 优化正则表达式
18.3. 优化正则表达式
Soundex 函数的第一件事是检查输入是否是一个空字符串。 怎样做是最好的方法?
如果你回答 “正则表达式”,坐在角落里反省你糟糕的直觉。正则表达式几乎永远不是最好的答案,而且应该被尽可能避开。 这不仅仅是基于性能考虑,而是因为差错和维护都很困难,当然性能也是个原因。
这是 soundex/stage1/soundex1a.py 检查 source 是否全部由字母构成的一段代码,至少是一个字母(而不是空字符串):
allChars = string.uppercase + string.lowercase if not re.search('^[%s]+$' % allChars, source): return "0000"
soundex1a.py 表现如何? 为了方便,__main__ 部分的代码包含了调用 timeit 模块,建立一个分别测试三个不同名字三次并显示最短耗时的一个计时测试代码:
if __name__ == '__main__': from timeit import Timer names = ('Woo', 'Pilgrim', 'Flingjingwaller') for name in names: statement = "soundex('%s')" % name t = Timer(statement, "from __main__ import soundex") print name.ljust(15), soundex(name), min(t.repeat())
那么,应用正则表达式的 soundex1a.py 表现如何呢?
C:\samples\soundex\stage1>python soundex1a.py Woo W000 19.3356647283 Pilgrim P426 24.0772053431 Flingjingwaller F452 35.0463220884
正如你预料,名字越长,算法耗时就越长。 有几个工作可以另我们减小这个差距(使函数对于长输入花费较短的相对时间)但是算法的本质决定它不可能每次运行时间都相同。
另一点应铭记于心的是,我们测试的是有代表性的名字样本。 Woo 是个被缩短到单字符并补零的小样本; Pilgrim 是个夹带着特别字符和忽略字符的平均长度的正常样本; Flingjingwaller 是一个包含连续重复字符并且特别长的样本。 其它的测试可能同样有帮助,但它们已经是很好的不同样本范围了。
那么那个正则表达式如何呢? 嗯,缺乏效率。因为这个表达式测试不止一个范围的字符 (A-Z 的大写范围和 a-z 的小写字母范围),我们可以使用一个正则表达式的缩写语法。这便是 soundex/stage1/soundex1b.py:
if not re.search('^[A-Za-z]+$', source): return "0000"
timeit 显示 soundex1b.py 比 soundex1a.py 稍微快一些,但是没什么令人激动的变化:
C:\samples\soundex\stage1>python soundex1b.py Woo W000 17.1361133887 Pilgrim P426 21.8201693232 Flingjingwaller F452 32.7262294509
在 第 15.3 节 “重构” 中我们看到正则表达式可以被编译并在重用时以更快速度获得结果。因为这个正则表达式在函数中每次被调用时都不变化,我们可以编译它一次并使用被编译的版本。这便是 soundex/stage1/soundex1c.py:
isOnlyChars = re.compile('^[A-Za-z]+$').search def soundex(source): if not isOnlyChars(source): return "0000"
soundex1c.py 中使用被编译的正则表达式产生了显著的提速:
C:\samples\soundex\stage1>python soundex1c.py Woo W000 14.5348347346 Pilgrim P426 19.2784703084 Flingjingwaller F452 30.0893873383
但是这样的优化是正路吗? 这里的逻辑很简单:输入 source 应该是非空,并且需要完全由字母构成。 如果编写一个循环查看每个字符并且与正则表达式一同工作是否会更快些?
这便是 soundex/stage1/soundex1d.py:
if not source: return "0000" for c in source: if not ('A' <= c <= 'Z') and not ('a' <= c <= 'z'): return "0000"
这个技术在 soundex1d.py 中恰好 不及 编译后的正则表达式快(尽管比使用未编译的正则表达式快):
C:\samples\soundex\stage1>python soundex1d.py Woo W000 15.4065058548 Pilgrim P426 22.2753567842 Flingjingwaller F452 37.5845122774
为什么 soundex1d.py 没能更快? 答案来自 Python 的编译本质。 正则表达式引擎以 C 语言编写, 被编译后则能本能地在你的计算机上运行。另一方面,循环是以 Python 编写,要通过 Python 解释器。尽管循环相对简单,但没能简单到补偿花在代码解释上的时间。正则表达式永远不是正确答案...... 但例外还是存在的。
恰巧 Python 提供了一个晦涩的字符串方法。 你有理由不了解它,因为本书未曾提到它。 这个方法便是 isalpha(), 它检查一个字符串是否只包含字母。
这便是 soundex/stage1/soundex1e.py:
if (not source) and (not source.isalpha()): return "0000"
在 soundex1e.py 中应用这个特殊方法我们能得到多少好处? 很多。
C:\samples\soundex\stage1>python soundex1e.py Woo W000 13.5069504644 Pilgrim P426 18.2199394057 Flingjingwaller F452 28.9975225902
例 18.3. 目前为止最好的结果: soundex/stage1/soundex1e.py
import string, re charToSoundex = {"A": "9", "B": "1", "C": "2", "D": "3", "E": "9", "F": "1", "G": "2", "H": "9", "I": "9", "J": "2", "K": "2", "L": "4", "M": "5", "N": "5", "O": "9", "P": "1", "Q": "2", "R": "6", "S": "2", "T": "3", "U": "9", "V": "1", "W": "9", "X": "2", "Y": "9", "Z": "2"} def soundex(source): if (not source) and (not source.isalpha()): return "0000" source = source[0].upper() + source[1:] digits = source[0] for s in source[1:]: s = s.upper() digits += charToSoundex[s] digits2 = digits[0] for d in digits[1:]: if digits2[-1] != d: digits2 += d digits3 = re.sub('9', '', digits2) while len(digits3) < 4: digits3 += "0" return digits3[:4] if __name__ == '__main__': from timeit import Timer names = ('Woo', 'Pilgrim', 'Flingjingwaller') for name in names: statement = "soundex('%s')" % name t = Timer(statement, "from __main__ import soundex") print name.ljust(15), soundex(name), min(t.repeat())
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论