返回介绍

solution / 0000-0099 / 0097.Interleaving String / README_EN

发布于 2024-06-17 01:04:05 字数 19115 浏览 0 评论 0 收藏 0

97. Interleaving String

中文文档

Description

Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2.

An interleaving of two strings s and t is a configuration where s and t are divided into n and m substrings respectively, such that:

  • s = s1 + s2 + ... + sn
  • t = t1 + t2 + ... + tm
  • |n - m| <= 1
  • The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ...

Note: a + b is the concatenation of strings a and b.

 

Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Explanation: One way to obtain s3 is:
Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a".
Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac".
Since s3 can be obtained by interleaving s1 and s2, we return true.

Example 2:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.

Example 3:

Input: s1 = "", s2 = "", s3 = ""
Output: true

 

Constraints:

  • 0 <= s1.length, s2.length <= 100
  • 0 <= s3.length <= 200
  • s1, s2, and s3 consist of lowercase English letters.

 

Follow up: Could you solve it using only O(s2.length) additional memory space?

Solutions

Solution 1: Memoization Search

Let's denote the length of string $s_1$ as $m$ and the length of string $s_2$ as $n$. If $m + n \neq |s_3|$, then $s_3$ is definitely not an interleaving string of $s_1$ and $s_2$, so we return false.

Next, we design a function $dfs(i, j)$, which represents whether the remaining part of $s_3$ can be interleaved from the $i$th character of $s_1$ and the $j$th character of $s_2$. The answer is $dfs(0, 0)$.

The calculation process of function $dfs(i, j)$ is as follows:

If $i \geq m$ and $j \geq n$, it means that both $s_1$ and $s_2$ have been traversed, so we return true.

If $i < m$ and $s_1[i] = s_3[i + j]$, it means that the character $s_1[i]$ is part of $s_3[i + j]$. Therefore, we recursively call $dfs(i + 1, j)$ to check whether the next character of $s_1$ can match the current character of $s_2$. If it can match, we return true.

Similarly, if $j < n$ and $s_2[j] = s_3[i + j]$, it means that the character $s_2[j]$ is part of $s_3[i + j]$. Therefore, we recursively call $dfs(i, j + 1)$ to check whether the next character of $s_2$ can match the current character of $s_1$. If it can match, we return true.

Otherwise, we return false.

To avoid repeated calculations, we can use memoization search.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of strings $s_1$ and $s_2$ respectively.

class Solution:
  def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
    @cache
    def dfs(i: int, j: int) -> bool:
      if i >= m and j >= n:
        return True
      k = i + j
      if i < m and s1[i] == s3[k] and dfs(i + 1, j):
        return True
      if j < n and s2[j] == s3[k] and dfs(i, j + 1):
        return True
      return False

    m, n = len(s1), len(s2)
    if m + n != len(s3):
      return False
    return dfs(0, 0)
class Solution {
  private Map<List<Integer>, Boolean> f = new HashMap<>();
  private String s1;
  private String s2;
  private String s3;
  private int m;
  private int n;

  public boolean isInterleave(String s1, String s2, String s3) {
    m = s1.length();
    n = s2.length();
    if (m + n != s3.length()) {
      return false;
    }
    this.s1 = s1;
    this.s2 = s2;
    this.s3 = s3;
    return dfs(0, 0);
  }

  private boolean dfs(int i, int j) {
    if (i >= m && j >= n) {
      return true;
    }
    var key = List.of(i, j);
    if (f.containsKey(key)) {
      return f.get(key);
    }
    int k = i + j;
    boolean ans = false;
    if (i < m && s1.charAt(i) == s3.charAt(k) && dfs(i + 1, j)) {
      ans = true;
    }
    if (!ans && j < n && s2.charAt(j) == s3.charAt(k) && dfs(i, j + 1)) {
      ans = true;
    }
    f.put(key, ans);
    return ans;
  }
}
class Solution {
public:
  bool isInterleave(string s1, string s2, string s3) {
    int m = s1.size(), n = s2.size();
    if (m + n != s3.size()) {
      return false;
    }
    vector<vector<int>> f(m + 1, vector<int>(n + 1, -1));
    function<bool(int, int)> dfs = [&](int i, int j) {
      if (i >= m && j >= n) {
        return true;
      }
      if (f[i][j] != -1) {
        return f[i][j] == 1;
      }
      f[i][j] = 0;
      int k = i + j;
      if (i < m && s1[i] == s3[k] && dfs(i + 1, j)) {
        f[i][j] = 1;
      }
      if (!f[i][j] && j < n && s2[j] == s3[k] && dfs(i, j + 1)) {
        f[i][j] = 1;
      }
      return f[i][j] == 1;
    };
    return dfs(0, 0);
  }
};
func isInterleave(s1 string, s2 string, s3 string) bool {
  m, n := len(s1), len(s2)
  if m+n != len(s3) {
    return false
  }

  f := map[int]bool{}
  var dfs func(int, int) bool
  dfs = func(i, j int) bool {
    if i >= m && j >= n {
      return true
    }
    if v, ok := f[i*200+j]; ok {
      return v
    }
    k := i + j
    f[i*200+j] = (i < m && s1[i] == s3[k] && dfs(i+1, j)) || (j < n && s2[j] == s3[k] && dfs(i, j+1))
    return f[i*200+j]
  }
  return dfs(0, 0)
}
function isInterleave(s1: string, s2: string, s3: string): boolean {
  const m = s1.length;
  const n = s2.length;
  if (m + n !== s3.length) {
    return false;
  }
  const f: number[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
  const dfs = (i: number, j: number): boolean => {
    if (i >= m && j >= n) {
      return true;
    }
    if (f[i][j]) {
      return f[i][j] === 1;
    }
    f[i][j] = -1;
    if (i < m && s1[i] === s3[i + j] && dfs(i + 1, j)) {
      f[i][j] = 1;
    }
    if (f[i][j] === -1 && j < n && s2[j] === s3[i + j] && dfs(i, j + 1)) {
      f[i][j] = 1;
    }
    return f[i][j] === 1;
  };
  return dfs(0, 0);
}
impl Solution {
  #[allow(dead_code)]
  pub fn is_interleave(s1: String, s2: String, s3: String) -> bool {
    let n = s1.len();
    let m = s2.len();

    if s1.len() + s2.len() != s3.len() {
      return false;
    }

    let mut record = vec![vec![-1; m + 1]; n + 1];

    Self::dfs(
      &mut record,
      n,
      m,
      0,
      0,
      &s1.chars().collect(),
      &s2.chars().collect(),
      &s3.chars().collect()
    )
  }

  #[allow(dead_code)]
  fn dfs(
    record: &mut Vec<Vec<i32>>,
    n: usize,
    m: usize,
    i: usize,
    j: usize,
    s1: &Vec<char>,
    s2: &Vec<char>,
    s3: &Vec<char>
  ) -> bool {
    if i >= n && j >= m {
      return true;
    }

    if record[i][j] != -1 {
      return record[i][j] == 1;
    }

    // Set the initial value
    record[i][j] = 0;
    let k = i + j;

    // Let's try `s1` first
    if i < n && s1[i] == s3[k] && Self::dfs(record, n, m, i + 1, j, s1, s2, s3) {
      record[i][j] = 1;
    }

    // If the first approach does not succeed, let's then try `s2`
    if
      record[i][j] == 0 &&
      j < m &&
      s2[j] == s3[k] &&
      Self::dfs(record, n, m, i, j + 1, s1, s2, s3)
    {
      record[i][j] = 1;
    }

    record[i][j] == 1
  }
}
public class Solution {
  private int m;
  private int n;
  private string s1;
  private string s2;
  private string s3;
  private int[,] f;

  public bool IsInterleave(string s1, string s2, string s3) {
    m = s1.Length;
    n = s2.Length;
    if (m + n != s3.Length) {
      return false;
    }
    this.s1 = s1;
    this.s2 = s2;
    this.s3 = s3;
    f = new int[m + 1, n + 1];
    return dfs(0, 0);
  }

  private bool dfs(int i, int j) {
    if (i >= m && j >= n) {
      return true;
    }
    if (f[i, j] != 0) {
      return f[i, j] == 1;
    }
    f[i, j] = -1;
    if (i < m && s1[i] == s3[i + j] && dfs(i + 1, j)) {
      f[i, j] = 1;
    }
    if (f[i, j] == -1 && j < n && s2[j] == s3[i + j] && dfs(i, j + 1)) {
      f[i, j] = 1;
    }
    return f[i, j] == 1;
  }
}

Solution 2: Dynamic Programming

We can convert the memoization search in Solution 1 into dynamic programming.

We define $f[i][j]$ to represent whether the first $i$ characters of string $s_1$ and the first $j$ characters of string $s_2$ can interleave to form the first $i + j$ characters of string $s_3$. When transitioning states, we can consider whether the current character is obtained from the last character of $s_1$ or the last character of $s_2$. Therefore, we have the state transition equation:

$$ f[i][j] = \begin{cases} f[i - 1][j] & \text{if } s_1[i - 1] = s_3[i + j - 1] \ \text{or } f[i][j - 1] & \text{if } s_2[j - 1] = s_3[i + j - 1] \ \text{false} & \text{otherwise} \end{cases} $$

where $f[0][0] = \text{true}$ indicates that an empty string is an interleaving string of two empty strings.

The answer is $f[m][n]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of strings $s_1$ and $s_2$ respectively.

class Solution:
  def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
    m, n = len(s1), len(s2)
    if m + n != len(s3):
      return False
    f = [[False] * (n + 1) for _ in range(m + 1)]
    f[0][0] = True
    for i in range(m + 1):
      for j in range(n + 1):
        k = i + j - 1
        if i and s1[i - 1] == s3[k]:
          f[i][j] = f[i - 1][j]
        if j and s2[j - 1] == s3[k]:
          f[i][j] |= f[i][j - 1]
    return f[m][n]
class Solution {
  public boolean isInterleave(String s1, String s2, String s3) {
    int m = s1.length(), n = s2.length();
    if (m + n != s3.length()) {
      return false;
    }
    boolean[][] f = new boolean[m + 1][n + 1];
    f[0][0] = true;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        int k = i + j - 1;
        if (i > 0 && s1.charAt(i - 1) == s3.charAt(k)) {
          f[i][j] = f[i - 1][j];
        }
        if (j > 0 && s2.charAt(j - 1) == s3.charAt(k)) {
          f[i][j] |= f[i][j - 1];
        }
      }
    }
    return f[m][n];
  }
}
class Solution {
public:
  bool isInterleave(string s1, string s2, string s3) {
    int m = s1.size(), n = s2.size();
    if (m + n != s3.size()) {
      return false;
    }
    bool f[m + 1][n + 1];
    memset(f, false, sizeof(f));
    f[0][0] = true;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        int k = i + j - 1;
        if (i > 0 && s1[i - 1] == s3[k]) {
          f[i][j] = f[i - 1][j];
        }
        if (j > 0 && s2[j - 1] == s3[k]) {
          f[i][j] |= f[i][j - 1];
        }
      }
    }
    return f[m][n];
  }
};
func isInterleave(s1 string, s2 string, s3 string) bool {
  m, n := len(s1), len(s2)
  if m+n != len(s3) {
    return false
  }
  f := make([][]bool, m+1)
  for i := range f {
    f[i] = make([]bool, n+1)
  }
  f[0][0] = true
  for i := 0; i <= m; i++ {
    for j := 0; j <= n; j++ {
      k := i + j - 1
      if i > 0 && s1[i-1] == s3[k] {
        f[i][j] = f[i-1][j]
      }
      if j > 0 && s2[j-1] == s3[k] {
        f[i][j] = (f[i][j] || f[i][j-1])
      }
    }
  }
  return f[m][n]
}
function isInterleave(s1: string, s2: string, s3: string): boolean {
  const m = s1.length;
  const n = s2.length;
  if (m + n !== s3.length) {
    return false;
  }
  const f: boolean[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(false));
  f[0][0] = true;
  for (let i = 0; i <= m; ++i) {
    for (let j = 0; j <= n; ++j) {
      const k = i + j - 1;
      if (i > 0 && s1[i - 1] === s3[k]) {
        f[i][j] = f[i - 1][j];
      }
      if (j > 0 && s2[j - 1] === s3[k]) {
        f[i][j] = f[i][j] || f[i][j - 1];
      }
    }
  }
  return f[m][n];
}
public class Solution {
  public bool IsInterleave(string s1, string s2, string s3) {
    int m = s1.Length, n = s2.Length;
    if (m + n != s3.Length) {
      return false;
    }
    bool[,] f = new bool[m + 1, n + 1];
    f[0, 0] = true;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        int k = i + j - 1;
        if (i > 0 && s1[i - 1] == s3[k]) {
          f[i, j] = f[i - 1, j];
        }
        if (j > 0 && s2[j - 1] == s3[k]) {
          f[i, j] |= f[i, j - 1];
        }
      }
    }
    return f[m, n];
  }
}

We notice that the state $f[i][j]$ is only related to the states $f[i - 1][j]$, $f[i][j - 1]$, and $f[i - 1][j - 1]$. Therefore, we can use a rolling array to optimize the space complexity, reducing the original space complexity from $O(m \times n)$ to $O(n)$.

class Solution:
  def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
    m, n = len(s1), len(s2)
    if m + n != len(s3):
      return False
    f = [True] + [False] * n
    for i in range(m + 1):
      for j in range(n + 1):
        k = i + j - 1
        if i:
          f[j] &= s1[i - 1] == s3[k]
        if j:
          f[j] |= f[j - 1] and s2[j - 1] == s3[k]
    return f[n]
class Solution {
  public boolean isInterleave(String s1, String s2, String s3) {
    int m = s1.length(), n = s2.length();
    if (m + n != s3.length()) {
      return false;
    }
    boolean[] f = new boolean[n + 1];
    f[0] = true;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        int k = i + j - 1;
        if (i > 0) {
          f[j] &= s1.charAt(i - 1) == s3.charAt(k);
        }
        if (j > 0) {
          f[j] |= (f[j - 1] & s2.charAt(j - 1) == s3.charAt(k));
        }
      }
    }
    return f[n];
  }
}
class Solution {
public:
  bool isInterleave(string s1, string s2, string s3) {
    int m = s1.size(), n = s2.size();
    if (m + n != s3.size()) {
      return false;
    }
    bool f[n + 1];
    memset(f, false, sizeof(f));
    f[0] = true;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        int k = i + j - 1;
        if (i) {
          f[j] &= s1[i - 1] == s3[k];
        }
        if (j) {
          f[j] |= (s2[j - 1] == s3[k] && f[j - 1]);
        }
      }
    }
    return f[n];
  }
};
func isInterleave(s1 string, s2 string, s3 string) bool {
  m, n := len(s1), len(s2)
  if m+n != len(s3) {
    return false
  }
  f := make([]bool, n+1)
  f[0] = true
  for i := 0; i <= m; i++ {
    for j := 0; j <= n; j++ {
      k := i + j - 1
      if i > 0 {
        f[j] = (f[j] && s1[i-1] == s3[k])
      }
      if j > 0 {
        f[j] = (f[j] || (s2[j-1] == s3[k] && f[j-1]))
      }
    }
  }
  return f[n]
}
function isInterleave(s1: string, s2: string, s3: string): boolean {
  const m = s1.length;
  const n = s2.length;
  if (m + n !== s3.length) {
    return false;
  }
  const f: boolean[] = new Array(n + 1).fill(false);
  f[0] = true;
  for (let i = 0; i <= m; ++i) {
    for (let j = 0; j <= n; ++j) {
      const k = i + j - 1;
      if (i) {
        f[j] = f[j] && s1[i - 1] === s3[k];
      }
      if (j) {
        f[j] = f[j] || (f[j - 1] && s2[j - 1] === s3[k]);
      }
    }
  }
  return f[n];
}
public class Solution {
  public bool IsInterleave(string s1, string s2, string s3) {
    int m = s1.Length, n = s2.Length;
    if (m + n != s3.Length) {
      return false;
    }
    bool[] f = new bool[n + 1];
    f[0] = true;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        int k = i + j - 1;
        if (i > 0) {
          f[j] &= s1[i - 1] == s3[k];
        }
        if (j > 0) {
          f[j] |= (f[j - 1] & s2[j - 1] == s3[k]);
        }
      }
    }
    return f[n];
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文