01. Python 工具
02. Python 基础
03. Numpy
- Numpy 简介
- Matplotlib 基础
- Numpy 数组及其索引
- 数组类型
- 数组方法
- 数组排序
- 数组形状
- 对角线
- 数组与字符串的转换
- 数组属性方法总结
- 生成数组的函数
- 矩阵
- 一般函数
- 向量化函数
- 二元运算
- ufunc 对象
- choose 函数实现条件筛选
- 数组广播机制
- 数组读写
- 结构化数组
- 记录数组
- 内存映射
- 从 Matlab 到 Numpy
04. Scipy
05. Python 进阶
- sys 模块简介
- 与操作系统进行交互:os 模块
- CSV 文件和 csv 模块
- 正则表达式和 re 模块
- datetime 模块
- SQL 数据库
- 对象关系映射
- 函数进阶:参数传递,高阶函数,lambda 匿名函数,global 变量,递归
- 迭代器
- 生成器
- with 语句和上下文管理器
- 修饰符
- 修饰符的使用
- operator, functools, itertools, toolz, fn, funcy 模块
- 作用域
- 动态编译
06. Matplotlib
- Pyplot 教程
- 使用 style 来配置 pyplot 风格
- 处理文本(基础)
- 处理文本(数学表达式)
- 图像基础
- 注释
- 标签
- figures, subplots, axes 和 ticks 对象
- 不要迷信默认设置
- 各种绘图实例
07. 使用其他语言进行扩展
- 简介
- Python 扩展模块
- Cython:Cython 基础,将源代码转换成扩展模块
- Cython:Cython 语法,调用其他C库
- Cython:class 和 cdef class,使用 C++
- Cython:Typed memoryviews
- 生成编译注释
- ctypes
08. 面向对象编程
09. Theano 基础
- Theano 简介及其安装
- Theano 基础
- Theano 在 Windows 上的配置
- Theano 符号图结构
- Theano 配置和编译模式
- Theano 条件语句
- Theano 循环:scan(详解)
- Theano 实例:线性回归
- Theano 实例:Logistic 回归
- Theano 实例:Softmax 回归
- Theano 实例:人工神经网络
- Theano 随机数流变量
- Theano 实例:更复杂的网络
- Theano 实例:卷积神经网络
- Theano tensor 模块:基础
- Theano tensor 模块:索引
- Theano tensor 模块:操作符和逐元素操作
- Theano tensor 模块:nnet 子模块
- Theano tensor 模块:conv 子模块
10. 有趣的第三方模块
11. 有用的工具
- pprint 模块:打印 Python 对象
- pickle, cPickle 模块:序列化 Python 对象
- json 模块:处理 JSON 数据
- glob 模块:文件模式匹配
- shutil 模块:高级文件操作
- gzip, zipfile, tarfile 模块:处理压缩文件
- logging 模块:记录日志
- string 模块:字符串处理
- collections 模块:更多数据结构
- requests 模块:HTTP for Human
12. Pandas
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
重定义森林火灾模拟
在前面的例子中,我们定义了一个 BurnableForest
,实现了一个循序渐进的生长和燃烧过程。
假设我们现在想要定义一个立即燃烧的过程(每次着火之后燃烧到不能燃烧为止,之后再生长,而不是每次只燃烧周围的一圈树木),由于燃烧过程不同,我们需要从 BurnableForest
中派生出两个新的子类 SlowBurnForest
(原来的燃烧过程) 和 InsantBurnForest
,为此
- 将
BurnableForest
中的burn_trees()
方法改写,不做任何操作,直接pass
(因为在advance_one_step()
中调用了它,所以不能直接去掉) - 在两个子类中定义新的
burn_trees()
方法。
In [1]:
import numpy as np
from scipy.ndimage.measurements import label
class Forest(object):
""" Forest can grow trees which eventually die."""
def __init__(self, size=(150,150), p_sapling=0.0025):
self.size = size
self.trees = np.zeros(self.size, dtype=bool)
self.p_sapling = p_sapling
def __repr__(self):
my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
return my_repr
def __str__(self):
return self.__class__.__name__
@property
def num_cells(self):
"""Number of cells available for growing trees"""
return np.prod(self.size)
@property
def tree_fraction(self):
"""
Fraction of trees
"""
num_trees = self.trees.sum()
return float(num_trees) / self.num_cells
def _rand_bool(self, p):
"""
Random boolean distributed according to p, less than p will be True
"""
return np.random.uniform(size=self.trees.shape) < p
def grow_trees(self):
"""
Growing trees.
"""
growth_sites = self._rand_bool(self.p_sapling)
self.trees[growth_sites] = True
def advance_one_step(self):
"""
Advance one step
"""
self.grow_trees()
class BurnableForest(Forest):
"""
Burnable forest support fires
"""
def __init__(self, p_lightning=5.0e-6, **kwargs):
super(BurnableForest, self).__init__(**kwargs)
self.p_lightning = p_lightning
self.fires = np.zeros((self.size), dtype=bool)
def advance_one_step(self):
"""
Advance one step
"""
super(BurnableForest, self).advance_one_step()
self.start_fires()
self.burn_trees()
@property
def fire_fraction(self):
"""
Fraction of fires
"""
num_fires = self.fires.sum()
return float(num_fires) / self.num_cells
def start_fires(self):
"""
Start of fire.
"""
lightning_strikes = (self._rand_bool(self.p_lightning) &
self.trees)
self.fires[lightning_strikes] = True
def burn_trees(self):
pass
class SlowBurnForest(BurnableForest):
def burn_trees(self):
"""
Burn trees.
"""
fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
fires[1:-1, 1:-1] = self.fires
north = fires[:-2, 1:-1]
south = fires[2:, 1:-1]
east = fires[1:-1, :-2]
west = fires[1:-1, 2:]
new_fires = (north | south | east | west) & self.trees
self.trees[self.fires] = False
self.fires = new_fires
class InstantBurnForest(BurnableForest):
def burn_trees(self):
# 起火点
strikes = self.fires
# 找到连通区域
groves, num_groves = label(self.trees)
fires = set(groves[strikes])
self.fires.fill(False)
# 将与着火点相连的区域都烧掉
for fire in fires:
self.fires[groves == fire] = True
self.trees[self.fires] = False
self.fires.fill(False)
测试:
In [2]:
forest = Forest()
sb_forest = SlowBurnForest()
ib_forest = InstantBurnForest()
forests = [forest, sb_forest, ib_forest]
tree_history = []
for i in xrange(1500):
for fst in forests:
fst.advance_one_step()
tree_history.append(tuple(fst.tree_fraction for fst in forests))
显示结果:
In [3]:
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(10,6))
plt.plot(tree_history)
plt.legend([f.__str__() for f in forests])
plt.show()
https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/ktroPGHoX0WtPtdx-0HRdac.png alt="">
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论