返回介绍

01. Python 工具

02. Python 基础

03. Numpy

04. Scipy

05. Python 进阶

06. Matplotlib

07. 使用其他语言进行扩展

08. 面向对象编程

09. Theano 基础

10. 有趣的第三方模块

11. 有用的工具

12. Pandas

重定义森林火灾模拟

发布于 2022-09-03 20:46:14 字数 6010 浏览 0 评论 0 收藏 0

在前面的例子中,我们定义了一个 BurnableForest,实现了一个循序渐进的生长和燃烧过程。

假设我们现在想要定义一个立即燃烧的过程(每次着火之后燃烧到不能燃烧为止,之后再生长,而不是每次只燃烧周围的一圈树木),由于燃烧过程不同,我们需要从 BurnableForest 中派生出两个新的子类 SlowBurnForest(原来的燃烧过程) 和 InsantBurnForest,为此

  • BurnableForest 中的 burn_trees() 方法改写,不做任何操作,直接 pass(因为在 advance_one_step() 中调用了它,所以不能直接去掉)
  • 在两个子类中定义新的 burn_trees() 方法。

In [1]:

import numpy as np
from scipy.ndimage.measurements import label

class Forest(object):
    """ Forest can grow trees which eventually die."""
    def __init__(self, size=(150,150), p_sapling=0.0025):
        self.size = size
        self.trees = np.zeros(self.size, dtype=bool)
        self.p_sapling = p_sapling

    def __repr__(self):
        my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
        return my_repr

    def __str__(self):
        return self.__class__.__name__

    @property
    def num_cells(self):
        """Number of cells available for growing trees"""
        return np.prod(self.size)

    @property
    def tree_fraction(self):
        """
 Fraction of trees
 """
        num_trees = self.trees.sum()
        return float(num_trees) / self.num_cells

    def _rand_bool(self, p):
        """
 Random boolean distributed according to p, less than p will be True
 """
        return np.random.uniform(size=self.trees.shape) < p

    def grow_trees(self):
        """
 Growing trees.
 """
        growth_sites = self._rand_bool(self.p_sapling)
        self.trees[growth_sites] = True    

    def advance_one_step(self):
        """
 Advance one step
 """
        self.grow_trees()

class BurnableForest(Forest):
    """
 Burnable forest support fires
 """    
    def __init__(self, p_lightning=5.0e-6, **kwargs):
        super(BurnableForest, self).__init__(**kwargs)
        self.p_lightning = p_lightning        
        self.fires = np.zeros((self.size), dtype=bool)

    def advance_one_step(self):
        """
 Advance one step
 """
        super(BurnableForest, self).advance_one_step()
        self.start_fires()
        self.burn_trees()

    @property
    def fire_fraction(self):
        """
 Fraction of fires
 """
        num_fires = self.fires.sum()
        return float(num_fires) / self.num_cells

    def start_fires(self):
        """
 Start of fire.
 """
        lightning_strikes = (self._rand_bool(self.p_lightning) & 
            self.trees)
        self.fires[lightning_strikes] = True

    def burn_trees(self):    
        pass

class SlowBurnForest(BurnableForest):
    def burn_trees(self):
        """
 Burn trees.
 """
        fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
        fires[1:-1, 1:-1] = self.fires
        north = fires[:-2, 1:-1]
        south = fires[2:, 1:-1]
        east = fires[1:-1, :-2]
        west = fires[1:-1, 2:]
        new_fires = (north | south | east | west) & self.trees
        self.trees[self.fires] = False
        self.fires = new_fires

class InstantBurnForest(BurnableForest):
    def burn_trees(self):
        # 起火点
        strikes = self.fires
        # 找到连通区域
        groves, num_groves = label(self.trees)
        fires = set(groves[strikes])
        self.fires.fill(False)
        # 将与着火点相连的区域都烧掉
        for fire in fires:
            self.fires[groves == fire] = True
        self.trees[self.fires] = False
        self.fires.fill(False)

测试:

In [2]:

forest = Forest()
sb_forest = SlowBurnForest()
ib_forest = InstantBurnForest()

forests = [forest, sb_forest, ib_forest]

tree_history = []

for i in xrange(1500):
    for fst in forests:
        fst.advance_one_step()
    tree_history.append(tuple(fst.tree_fraction for fst in forests))

显示结果:

In [3]:

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(10,6))

plt.plot(tree_history)
plt.legend([f.__str__() for f in forests])

plt.show()

https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/ktroPGHoX0WtPtdx-0HRdac.png alt="">

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文