返回介绍

solution / 2500-2599 / 2508.Add Edges to Make Degrees of All Nodes Even / README_EN

发布于 2024-06-17 01:03:04 字数 7080 浏览 0 评论 0 收藏 0

2508. Add Edges to Make Degrees of All Nodes Even

中文文档

Description

There is an undirected graph consisting of n nodes numbered from 1 to n. You are given the integer n and a 2D array edges where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi. The graph can be disconnected.

You can add at most two additional edges (possibly none) to this graph so that there are no repeated edges and no self-loops.

Return true_ if it is possible to make the degree of each node in the graph even, otherwise return _false_._

The degree of a node is the number of edges connected to it.

 

Example 1:

Input: n = 5, edges = [[1,2],[2,3],[3,4],[4,2],[1,4],[2,5]]
Output: true
Explanation: The above diagram shows a valid way of adding an edge.
Every node in the resulting graph is connected to an even number of edges.

Example 2:

Input: n = 4, edges = [[1,2],[3,4]]
Output: true
Explanation: The above diagram shows a valid way of adding two edges.

Example 3:

Input: n = 4, edges = [[1,2],[1,3],[1,4]]
Output: false
Explanation: It is not possible to obtain a valid graph with adding at most 2 edges.

 

Constraints:

  • 3 <= n <= 105
  • 2 <= edges.length <= 105
  • edges[i].length == 2
  • 1 <= ai, bi <= n
  • ai != bi
  • There are no repeated edges.

Solutions

Solution 1

class Solution:
  def isPossible(self, n: int, edges: List[List[int]]) -> bool:
    g = defaultdict(set)
    for a, b in edges:
      g[a].add(b)
      g[b].add(a)
    vs = [i for i, v in g.items() if len(v) & 1]
    if len(vs) == 0:
      return True
    if len(vs) == 2:
      a, b = vs
      if a not in g[b]:
        return True
      return any(a not in g[c] and c not in g[b] for c in range(1, n + 1))
    if len(vs) == 4:
      a, b, c, d = vs
      if a not in g[b] and c not in g[d]:
        return True
      if a not in g[c] and b not in g[d]:
        return True
      if a not in g[d] and b not in g[c]:
        return True
      return False
    return False
class Solution {
  public boolean isPossible(int n, List<List<Integer>> edges) {
    Set<Integer>[] g = new Set[n + 1];
    Arrays.setAll(g, k -> new HashSet<>());
    for (var e : edges) {
      int a = e.get(0), b = e.get(1);
      g[a].add(b);
      g[b].add(a);
    }
    List<Integer> vs = new ArrayList<>();
    for (int i = 1; i <= n; ++i) {
      if (g[i].size() % 2 == 1) {
        vs.add(i);
      }
    }
    if (vs.size() == 0) {
      return true;
    }
    if (vs.size() == 2) {
      int a = vs.get(0), b = vs.get(1);
      if (!g[a].contains(b)) {
        return true;
      }
      for (int c = 1; c <= n; ++c) {
        if (a != c && b != c && !g[a].contains(c) && !g[c].contains(b)) {
          return true;
        }
      }
      return false;
    }
    if (vs.size() == 4) {
      int a = vs.get(0), b = vs.get(1), c = vs.get(2), d = vs.get(3);
      if (!g[a].contains(b) && !g[c].contains(d)) {
        return true;
      }
      if (!g[a].contains(c) && !g[b].contains(d)) {
        return true;
      }
      if (!g[a].contains(d) && !g[b].contains(c)) {
        return true;
      }
      return false;
    }
    return false;
  }
}
class Solution {
public:
  bool isPossible(int n, vector<vector<int>>& edges) {
    vector<unordered_set<int>> g(n + 1);
    for (auto& e : edges) {
      int a = e[0], b = e[1];
      g[a].insert(b);
      g[b].insert(a);
    }
    vector<int> vs;
    for (int i = 1; i <= n; ++i) {
      if (g[i].size() % 2) {
        vs.emplace_back(i);
      }
    }
    if (vs.size() == 0) {
      return true;
    }
    if (vs.size() == 2) {
      int a = vs[0], b = vs[1];
      if (!g[a].count(b)) return true;
      for (int c = 1; c <= n; ++c) {
        if (a != b && b != c && !g[a].count(c) && !g[c].count(b)) {
          return true;
        }
      }
      return false;
    }
    if (vs.size() == 4) {
      int a = vs[0], b = vs[1], c = vs[2], d = vs[3];
      if (!g[a].count(b) && !g[c].count(d)) return true;
      if (!g[a].count(c) && !g[b].count(d)) return true;
      if (!g[a].count(d) && !g[b].count(c)) return true;
      return false;
    }
    return false;
  }
};
func isPossible(n int, edges [][]int) bool {
  g := make([]map[int]bool, n+1)
  for _, e := range edges {
    a, b := e[0], e[1]
    if g[a] == nil {
      g[a] = map[int]bool{}
    }
    if g[b] == nil {
      g[b] = map[int]bool{}
    }
    g[a][b], g[b][a] = true, true
  }
  vs := []int{}
  for i := 1; i <= n; i++ {
    if len(g[i])%2 == 1 {
      vs = append(vs, i)
    }
  }
  if len(vs) == 0 {
    return true
  }
  if len(vs) == 2 {
    a, b := vs[0], vs[1]
    if !g[a][b] {
      return true
    }
    for c := 1; c <= n; c++ {
      if a != c && b != c && !g[a][c] && !g[c][b] {
        return true
      }
    }
    return false
  }
  if len(vs) == 4 {
    a, b, c, d := vs[0], vs[1], vs[2], vs[3]
    if !g[a][b] && !g[c][d] {
      return true
    }
    if !g[a][c] && !g[b][d] {
      return true
    }
    if !g[a][d] && !g[b][c] {
      return true
    }
    return false
  }
  return false
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文