手册
- 起步
- 进阶
- 构建工具
参考
- 动画
- 动画 / 轨道
- 音频
- 摄像机
- 常量
- 核心
- 核心 / BufferAttributes
- 附件
- 附件 / 核心
- 附件 / 曲线
- 附件 / 物体
- 几何体
- 立方缓冲几何体(BoxGeometry)
- 圆形缓冲几何体(CircleGeometry)
- 圆锥缓冲几何体(ConeGeometry)
- 圆柱缓冲几何体(CylinderGeometry)
- 十二面缓冲几何体(DodecahedronGeometry)
- 边缘几何体(EdgesGeometry)
- 挤压缓冲几何体(ExtrudeGeometry)
- 二十面缓冲几何体(IcosahedronGeometry)
- 车削缓冲几何体(LatheGeometry)
- 八面缓冲几何体(OctahedronGeometry)
- 参数化缓冲几何体(ParametricGeometry)
- 平面缓冲几何体(PlaneGeometry)
- 多面缓冲几何体(PolyhedronGeometry)
- 圆环缓冲几何体(RingGeometry)
- 形状缓冲几何体(ShapeGeometry)
- 球缓冲几何体(SphereGeometry)
- 四面缓冲几何体(TetrahedronGeometry)
- 文本缓冲几何体(TextGeometry)
- 圆环缓冲几何体(TorusGeometry)
- 圆环缓冲扭结几何体(TorusKnotGeometry)
- 管道缓冲几何体(TubeGeometry)
- 网格几何体(WireframeGeometry)
- 辅助对象
- 灯光
- 灯光 / 阴影
- 加载器
- 加载器 / 管理器
- 材质
- 基础线条材质(LineBasicMaterial)
- 虚线材质(LineDashedMaterial)
- 材质(Material)
- 基础网格材质(MeshBasicMaterial)
- 深度网格材质(MeshDepthMaterial)
- MeshDistanceMaterial
- Lambert网格材质(MeshLambertMaterial)
- MeshMatcapMaterial
- 法线网格材质(MeshNormalMaterial)
- Phong网格材质(MeshPhongMaterial)
- 物理网格材质(MeshPhysicalMaterial)
- 标准网格材质(MeshStandardMaterial)
- MeshToonMaterial
- 点材质(PointsMaterial)
- 原始着色器材质(RawShaderMaterial)
- 着色器材质(ShaderMaterial)
- 阴影材质(ShadowMaterial)
- 点精灵材质(SpriteMaterial)
- 数学库
- 数学库 / 插值
- 物体
- 渲染器
- 渲染器 / 着色器
- 渲染器 / WebXR
- 场景
- 纹理贴图
示例
- 动画
- 控制
- 几何体
- 辅助对象
- 灯光
- 加载器
- 物体
- 后期处理
- 导出器
- 数学库
- QuickHull
- 渲染器
- 实用工具
开发者参考
- 差异化支持
- WebGL 渲染器
光线投射Raycaster
这个类用于进行raycasting(光线投射)。 光线投射用于进行鼠标拾取(在三维空间中计算出鼠标移过了什么物体)。
代码示例
const raycaster = new THREE.Raycaster(); const mouse = new THREE.Vector2(); function onMouseMove( event ) { // 将鼠标位置归一化为设备坐标。x 和 y 方向的取值范围是 (-1 to +1) mouse.x = ( event.clientX / window.innerWidth ) * 2 - 1; mouse.y = - ( event.clientY / window.innerHeight ) * 2 + 1; } function render() { // 通过摄像机和鼠标位置更新射线 raycaster.setFromCamera( mouse, camera ); // 计算物体和射线的焦点 const intersects = raycaster.intersectObjects( scene.children ); for ( let i = 0; i < intersects.length; i ++ ) { intersects[ i ].object.material.color.set( 0xff0000 ); } renderer.render( scene, camera ); } window.addEventListener( 'mousemove', onMouseMove, false ); window.requestAnimationFrame(render);
例子
Raycasting to a Mesh
Raycasting to a Mesh in using an OrthographicCamera
Raycasting to a Mesh with BufferGeometry
Raycasting to a InstancedMesh
Raycasting to a Line
Raycasting to Points
Terrain raycasting
Raycasting to paint voxels
Raycast to a Texture
构造器
Raycaster( origin : Vector3, direction : Vector3, near : Float, far : Float ) {
origin —— 光线投射的原点向量。
direction —— 向射线提供方向的方向向量,应当被标准化。
near —— 返回的所有结果比near远。near不能为负值,其默认值为0。
far —— 返回的所有结果都比far近。far不能小于near,其默认值为Infinity(正无穷。)
这将创建一个新的raycaster对象。
属性
.far : Float
raycaster的远距离因数(投射远点)。这个值表明哪些对象可以基于该距离而被raycaster所丢弃。 这个值不应当为负,并且应当比near属性大。
.near : Float
raycaster的近距离因数(投射近点)。这个值表明哪些对象可以基于该距离而被raycaster所丢弃。 这个值不应当为负,并且应当比far属性小。
.camera : Camera
The camera to use when raycasting against view-dependent objects such as billboarded objects like Sprites. This field can be set manually or is set when calling "setFromCamera". Defaults to null.
.layers : Layers
Used by Raycaster to selectively ignore 3D objects when performing intersection tests. The following code example ensures that only 3D objects on layer 1 will be honored by the instance of Raycaster.
raycaster.layers.set( 1 ); object.layers.enable( 1 );
.params : Object
具有以下属性的对象:
{ Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }Where threshold is the precision of the raycaster when intersecting objects, in world units.
.ray : Ray
用于进行光线投射的Ray(射线)。
方法
.set ( origin : Vector3, direction : Vector3 ) : null
origin —— 光线投射的原点向量。
direction —— 为光线提供方向的标准化方向向量。
使用一个新的原点和方向来更新射线。
.setFromCamera ( coords : Vector2, camera : Camera ) : null
coords —— 在标准化设备坐标中鼠标的二维坐标 —— X分量与Y分量应当在-1到1之间。
camera —— 射线所来源的摄像机。
使用一个新的原点和方向来更新射线。
.intersectObject ( object : Object3D, recursive : Boolean, optionalTarget : Array ) : Array
object —— 检查与射线相交的物体。
recursive —— 若为true,则同时也会检查所有的后代。否则将只会检查对象本身。默认值为false。
optionalTarget — (可选)设置结果的目标数组。如果不设置这个值,则一个新的Array会被实例化;如果设置了这个值,则在每次调用之前必须清空这个数组(例如:array.length = 0;)。
检测所有在射线与物体之间,包括或不包括后代的相交部分。返回结果时,相交部分将按距离进行排序,最近的位于第一个。
该方法返回一个包含有交叉部分的数组:
[ { distance, point, face, faceIndex, object }, ... ]
distance —— 射线投射原点和相交部分之间的距离。
point —— 相交部分的点(世界坐标)
face —— 相交的面
faceIndex —— 相交的面的索引
object —— 相交的物体
uv —— 相交部分的点的UV坐标。
uv2 —— Second set of U,V coordinates at point of intersection
instanceId – The index number of the instance where the ray intersects the InstancedMesh
当计算这条射线是否和物体相交的时候,Raycaster将传入的对象委托给raycast方法。 这将可以让mesh对于光线投射的响应不同于lines和pointclouds。
请注意:对于网格来说,面必须朝向射线的原点,以便其能够被检测到。 用于交互的射线穿过面的背侧时,将不会被检测到。如果需要对物体中面的两侧进行光线投射, 你需要将material中的side属性设置为THREE.DoubleSide。
.intersectObjects ( objects : Array, recursive : Boolean, optionalTarget : Array ) : Array
objects —— 检测和射线相交的一组物体。
recursive —— 若为true,则同时也会检测所有物体的后代。否则将只会检测对象本身的相交部分。默认值为false。
optionalTarget —— (可选)设置结果的目标数组。如果不设置这个值,则一个新的Array会被实例化;如果设置了这个值,则在每次调用之前必须清空这个数组(例如:array.length = 0;)。
检测所有在射线与这些物体之间,包括或不包括后代的相交部分。返回结果时,相交部分将按距离进行排序,最近的位于第一个),相交部分和.intersectObject所返回的格式是相同的。
源代码
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论