返回介绍

solution / 1800-1899 / 1883.Minimum Skips to Arrive at Meeting On Time / README_EN

发布于 2024-06-17 01:03:13 字数 8070 浏览 0 评论 0 收藏 0

1883. Minimum Skips to Arrive at Meeting On Time

中文文档

Description

You are given an integer hoursBefore, the number of hours you have to travel to your meeting. To arrive at your meeting, you have to travel through n roads. The road lengths are given as an integer array dist of length n, where dist[i] describes the length of the ith road in kilometers. In addition, you are given an integer speed, which is the speed (in km/h) you will travel at.

After you travel road i, you must rest and wait for the next integer hour before you can begin traveling on the next road. Note that you do not have to rest after traveling the last road because you are already at the meeting.

  • For example, if traveling a road takes 1.4 hours, you must wait until the 2 hour mark before traveling the next road. If traveling a road takes exactly 2 hours, you do not need to wait.

However, you are allowed to skip some rests to be able to arrive on time, meaning you do not need to wait for the next integer hour. Note that this means you may finish traveling future roads at different hour marks.

  • For example, suppose traveling the first road takes 1.4 hours and traveling the second road takes 0.6 hours. Skipping the rest after the first road will mean you finish traveling the second road right at the 2 hour mark, letting you start traveling the third road immediately.

Return _the minimum number of skips required to arrive at the meeting on time, or_ -1_ if it is impossible_.

 

Example 1:

Input: dist = [1,3,2], speed = 4, hoursBefore = 2
Output: 1
Explanation:
Without skipping any rests, you will arrive in (1/4 + 3/4) + (3/4 + 1/4) + (2/4) = 2.5 hours.
You can skip the first rest to arrive in ((1/4 + 0) + (3/4 + 0)) + (2/4) = 1.5 hours.
Note that the second rest is shortened because you finish traveling the second road at an integer hour due to skipping the first rest.

Example 2:

Input: dist = [7,3,5,5], speed = 2, hoursBefore = 10
Output: 2
Explanation:
Without skipping any rests, you will arrive in (7/2 + 1/2) + (3/2 + 1/2) + (5/2 + 1/2) + (5/2) = 11.5 hours.
You can skip the first and third rest to arrive in ((7/2 + 0) + (3/2 + 0)) + ((5/2 + 0) + (5/2)) = 10 hours.

Example 3:

Input: dist = [7,3,5,5], speed = 1, hoursBefore = 10
Output: -1
Explanation: It is impossible to arrive at the meeting on time even if you skip all the rests.

 

Constraints:

  • n == dist.length
  • 1 <= n <= 1000
  • 1 <= dist[i] <= 105
  • 1 <= speed <= 106
  • 1 <= hoursBefore <= 107

Solutions

Solution 1

class Solution:
  def minSkips(self, dist: List[int], speed: int, hoursBefore: int) -> int:
    n = len(dist)
    f = [[inf] * (n + 1) for _ in range(n + 1)]
    f[0][0] = 0
    eps = 1e-8
    for i, x in enumerate(dist, 1):
      for j in range(i + 1):
        if j < i:
          f[i][j] = min(f[i][j], ceil(f[i - 1][j] + x / speed - eps))
        if j:
          f[i][j] = min(f[i][j], f[i - 1][j - 1] + x / speed)
    for j in range(n + 1):
      if f[n][j] <= hoursBefore + eps:
        return j
    return -1
class Solution {
  public int minSkips(int[] dist, int speed, int hoursBefore) {
    int n = dist.length;
    double[][] f = new double[n + 1][n + 1];
    for (int i = 0; i <= n; i++) {
      Arrays.fill(f[i], 1e20);
    }
    f[0][0] = 0;
    double eps = 1e-8;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j <= i; ++j) {
        if (j < i) {
          f[i][j] = Math.min(
            f[i][j], Math.ceil(f[i - 1][j]) + 1.0 * dist[i - 1] / speed - eps);
        }
        if (j > 0) {
          f[i][j] = Math.min(f[i][j], f[i - 1][j - 1] + 1.0 * dist[i - 1] / speed);
        }
      }
    }
    for (int j = 0; j <= n; ++j) {
      if (f[n][j] <= hoursBefore + eps) {
        return j;
      }
    }
    return -1;
  }
}
class Solution {
public:
  int minSkips(vector<int>& dist, int speed, int hoursBefore) {
    int n = dist.size();
    vector<vector<double>> f(n + 1, vector<double>(n + 1, 1e20));
    f[0][0] = 0;
    double eps = 1e-8;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j <= i; ++j) {
        if (j < i) {
          f[i][j] = min(f[i][j], ceil(f[i - 1][j] + dist[i - 1] * 1.0 / speed - eps));
        }
        if (j) {
          f[i][j] = min(f[i][j], f[i - 1][j - 1] + dist[i - 1] * 1.0 / speed);
        }
      }
    }
    for (int j = 0; j <= n; ++j) {
      if (f[n][j] <= hoursBefore + eps) {
        return j;
      }
    }
    return -1;
  }
};
func minSkips(dist []int, speed int, hoursBefore int) int {
  n := len(dist)
  f := make([][]float64, n+1)
  for i := range f {
    f[i] = make([]float64, n+1)
    for j := range f[i] {
      f[i][j] = 1e20
    }
  }
  f[0][0] = 0
  eps := 1e-8
  for i := 1; i <= n; i++ {
    for j := 0; j <= i; j++ {
      if j < i {
        f[i][j] = math.Min(f[i][j], math.Ceil(f[i-1][j]+float64(dist[i-1])/float64(speed)-eps))
      }
      if j > 0 {
        f[i][j] = math.Min(f[i][j], f[i-1][j-1]+float64(dist[i-1])/float64(speed))
      }
    }
  }
  for j := 0; j <= n; j++ {
    if f[n][j] <= float64(hoursBefore) {
      return j
    }
  }
  return -1
}
function minSkips(dist: number[], speed: number, hoursBefore: number): number {
  const n = dist.length;
  const f = Array.from({ length: n + 1 }, () => Array.from({ length: n + 1 }, () => Infinity));
  f[0][0] = 0;
  const eps = 1e-8;
  for (let i = 1; i <= n; ++i) {
    for (let j = 0; j <= i; ++j) {
      if (j < i) {
        f[i][j] = Math.min(f[i][j], Math.ceil(f[i - 1][j] + dist[i - 1] / speed - eps));
      }
      if (j) {
        f[i][j] = Math.min(f[i][j], f[i - 1][j - 1] + dist[i - 1] / speed);
      }
    }
  }
  for (let j = 0; j <= n; ++j) {
    if (f[n][j] <= hoursBefore + eps) {
      return j;
    }
  }
  return -1;
}

Solution 2

class Solution:
  def minSkips(self, dist: List[int], speed: int, hoursBefore: int) -> int:
    n = len(dist)
    f = [[inf] * (n + 1) for _ in range(n + 1)]
    f[0][0] = 0
    for i, x in enumerate(dist, 1):
      for j in range(i + 1):
        if j < i:
          f[i][j] = min(f[i][j], ((f[i - 1][j] + x - 1) // speed + 1) * speed)
        if j:
          f[i][j] = min(f[i][j], f[i - 1][j - 1] + x)
    for j in range(n + 1):
      if f[n][j] <= hoursBefore * speed:
        return j
    return -1

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文