第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Zscore Model Tutorial
1. 什么是 Zscore Model
信用风险评分方法通常包括定性法、单变量法、多变量法,目前广泛采用多变量方法包括如判别分析(discriminant analysis)、逻辑回归(logit regression)和非线性模型如神经网络等。奥特曼博士于1968年发表的Z-score模型基于多变量判别分析方法。
Z-score模型基于各变量加权得分对企业是否破产进行判断,在Z-score原始模型中,得分高于2.99的属于“安全”区域、低于1.80的属于“困境”区域,两个得分之间的属于“灰色”区域。
Z-score模型在美国企业如柯达、通用汽车的破产预测得到了很好的结果。
2. 本模块提供的 Zscore Model
下面我们从原理,模型公式,划分区间三个方面来简单介绍一下本模块中的两个Z-score模型:
2.1 All Corporate Bonds
模型原理
- No equity prices are needed
- Uses discriminant analysis methodology
- Coefficients are obtained from China distressed firm dataset from historical periods
模型公式
ZScore = 0.517 - 0.460*TotalLiabilities/TotalAssets
+ 9.320*NetProfit/0.5*(TotalAssets+TotalAssets[last])
+ 0.388*WorkingCapital/TotalAssets
+ 1.158*RetainedEarnings/TotalAssets
= 0.517 - 0.460*x1
+ 9.320*2/x2
+ 0.388*x3
+ 1.158*x4
划分区间
Z-score < 0.5
: 已经违约0.5 < Z-score < 0.9
: 有违约的可能性Z-score > 0.9
: 财务健康,短期内不会出现违约情况
2.2 Corporate Bonds with Equity Listings
模型原理
- Uses Equity Prices: Information from equity set
- Uses discriminant analysis methodology
- Coefficients are obtained from China distressed firm dataset from historical periods
模型公式
ZScore = 0.2086*x1 + 4.3465*x2 + 4.9601*x3
x1: market value/book value of TotalLiabilities
x2: total sales/TotalAssets
x3: (TotalAssets-TotalAssets[last])/TotalAssets[last]
coef = [0.2086, 4.3465, 4.9601]
划分区间
Z-score < 1.5408
: 已经违约Z-score > 1.5408
: 财务健康,短期内不会出现违约情况
3. 如何实用本模块提供的 Zscore Model 接口
本模块目前提供了四个Z-score模型接口,分别如下:
3.1 zscore_ACB
---
Interface for calculating zscore using ACB.
parameter:
ticker[string]: ticker code
parameter[opt]:
begin[int]: year begin, default 2010
end[int]: year end, default 2014
coef[list of int]: coefficients for Zscore Model, default [0.517, -0.460, 18.640, 0.388, 1.158]
---
when success, will return factors and status code, as a dict;
when failed for some reason, will return error message and error code, as a dict;
---
Model ACB:
All Corporate Bonds
ZScore = 0.517 - 0.460*TotalLiabilities/TotalAssets
+ 9.320*NetProfit/0.5*(TotalAssets+TotalAssets[last])
+ 0.388*WorkingCapital/TotalAssets
+ 1.158*RetainedEarnings/TotalAssets
= 0.517 - 0.460*x1
+ 9.320*2/x2
+ 0.388*x3
+ 1.158*x4
coef = [0.517, -0.460, 18.640, 0.388, 1.158]
3.2 zscore_ACB_List
---
Interface for calculating zscore using ACB.
parameter:
ticker[list]: ticker code
parameter[opt]:
begin[int or list]: year begin, default 2010
end[int or list]: year end, default 2014
coef[list of int]: coefficients for Zscore Model, default [0.517, -0.460, 18.640, 0.388, 1.158]
---
3.3 zscore_ACBEL
---
Interface for calculating zscore using ACBEL.
parameter:
ticker[string]: ticker code
parameter[opt]:
begin[int]: year begin, default 2010
end[int]: year end, default 2014
coef[list of int]: coefficients for model, default [0.2086, 4.3465, 4.9601]
---
when success, will return factors and status code, as a dict;
when failed for some reason, will return error message and error code, as a dict;
---
Model ACB:
All Corporate Bonds with Equity Listings
ZScore = 0.2086*x1 + 4.3465*x2 + 4.9601*x3
x1: market value/book value of TotalLiabilities
x2: total sales/TotalAssets
x3: (TotalAssets-TotalAssets[last])/TotalAssets[last]
coef = [0.2086, 4.3465, 4.9601]
---
3.4 zscore_ACBEL_List
---
Interface for calculating zscore using ACBEL.
parameter:
ticker[list]: ticker code
parameter[opt]:
begin[int or list]: year begin, default 2010
end[int or list]: year end, default 2014
coef[list of int]: coefficients for Zscore Model, default [0.2086, 4.3465, 4.9601]
---
4. 一个 Zscore Model 实例
相关步骤说明如下:
- 4.1 导出该模块
- 4.2 输入股票代码,可选择性输入计算时间区间,以年为单位
- 4.3 得到计算结果
- 4.4 作图分析
# 4.1 & 4.2
GZMT = zscore_ACB('600519')
# 4.3
factors = GZMT['factors']
# 4.4
from matplotlib.pylab import plot
plot(factors['zscore'])
[<matplotlib.lines.Line2D at 0x4eda750>]
5. 本模块未来版本规划
为适应光大金融人士更加方便地使用 Z-Score Model,本模块将在以下几个方面对本模块的未来版本进行规划:
- 更加简单:提供上传模板,用户只需按照一定格式上传自己持仓的 excel 表格,即可在零编码的情况下得到相应持仓债券、股票发行人的 Z-Score 情况;
- 更加灵活:将会允许用户在我们定义的两个 Z-Score 模型的相关系数;
- 更加智能:预计提供给用户将近50个公司财务相关的因子,由用户自定义因子和相关的系数来计算 Z-Score 值;
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论