返回介绍

solution / 3000-3099 / 3040.Maximum Number of Operations With the Same Score II / README_EN

发布于 2024-06-17 01:02:57 字数 8542 浏览 0 评论 0 收藏 0

3040. Maximum Number of Operations With the Same Score II

中文文档

Description

Given an array of integers called nums, you can perform any of the following operation while nums contains at least 2 elements:

  • Choose the first two elements of nums and delete them.
  • Choose the last two elements of nums and delete them.
  • Choose the first and the last elements of nums and delete them.

The score of the operation is the sum of the deleted elements.

Your task is to find the maximum number of operations that can be performed, such that all operations have the same score.

Return _the maximum number of operations possible that satisfy the condition mentioned above_.

 

Example 1:

Input: nums = [3,2,1,2,3,4]
Output: 3
Explanation: We perform the following operations:
- Delete the first two elements, with score 3 + 2 = 5, nums = [1,2,3,4].
- Delete the first and the last elements, with score 1 + 4 = 5, nums = [2,3].
- Delete the first and the last elements, with score 2 + 3 = 5, nums = [].
We are unable to perform any more operations as nums is empty.

Example 2:

Input: nums = [3,2,6,1,4]
Output: 2
Explanation: We perform the following operations:
- Delete the first two elements, with score 3 + 2 = 5, nums = [6,1,4].
- Delete the last two elements, with score 1 + 4 = 5, nums = [6].
It can be proven that we can perform at most 2 operations.

 

Constraints:

  • 2 <= nums.length <= 2000
  • 1 <= nums[i] <= 1000

Solutions

Solution 1: Memorization Search

There are three possible values for the score $s$, which are $s = nums[0] + nums[1]$, $s = nums[0] + nums[n-1]$, and $s = nums[n-1] + nums[n-2]$. We can perform memorization search for these three cases separately.

We design a function $dfs(i, j)$, which represents the maximum number of operations from index $i$ to index $j$ when the score is $s$. The execution process of function $dfs(i, j)$ is as follows:

  • If $j - i < 1$, it means that the length of the interval $[i, j]$ is less than $2$, and no operation can be performed, so return $0$.
  • If $nums[i] + nums[i+1] = s$, it means that the elements at index $i$ and index $i+1$ can be deleted. In this case, the maximum number of operations is $1 + dfs(i+2, j)$.
  • If $nums[i] + nums[j] = s$, it means that the elements at index $i$ and index $j$ can be deleted. In this case, the maximum number of operations is $1 + dfs(i+1, j-1)$.
  • If $nums[j-1] + nums[j] = s$, it means that the elements at index $j-1$ and index $j$ can be deleted. In this case, the maximum number of operations is $1 + dfs(i, j-2)$.
  • Return the maximum of the above values.

Finally, we calculate the maximum number of operations for the three cases separately, and return the maximum value.

The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the array $nums$.

class Solution:
  def maxOperations(self, nums: List[int]) -> int:
    @cache
    def dfs(i: int, j: int, s: int) -> int:
      if j - i < 1:
        return 0
      ans = 0
      if nums[i] + nums[i + 1] == s:
        ans = max(ans, 1 + dfs(i + 2, j, s))
      if nums[i] + nums[j] == s:
        ans = max(ans, 1 + dfs(i + 1, j - 1, s))
      if nums[j - 1] + nums[j] == s:
        ans = max(ans, 1 + dfs(i, j - 2, s))
      return ans

    n = len(nums)
    a = dfs(2, n - 1, nums[0] + nums[1])
    b = dfs(0, n - 3, nums[-1] + nums[-2])
    c = dfs(1, n - 2, nums[0] + nums[-1])
    return 1 + max(a, b, c)
class Solution {
  private Integer[][] f;
  private int[] nums;
  private int s;
  private int n;

  public int maxOperations(int[] nums) {
    this.nums = nums;
    n = nums.length;
    int a = g(2, n - 1, nums[0] + nums[1]);
    int b = g(0, n - 3, nums[n - 2] + nums[n - 1]);
    int c = g(1, n - 2, nums[0] + nums[n - 1]);
    return 1 + Math.max(a, Math.max(b, c));
  }

  private int g(int i, int j, int s) {
    f = new Integer[n][n];
    this.s = s;
    return dfs(i, j);
  }

  private int dfs(int i, int j) {
    if (j - i < 1) {
      return 0;
    }
    if (f[i][j] != null) {
      return f[i][j];
    }
    int ans = 0;
    if (nums[i] + nums[i + 1] == s) {
      ans = Math.max(ans, 1 + dfs(i + 2, j));
    }
    if (nums[i] + nums[j] == s) {
      ans = Math.max(ans, 1 + dfs(i + 1, j - 1));
    }
    if (nums[j - 1] + nums[j] == s) {
      ans = Math.max(ans, 1 + dfs(i, j - 2));
    }
    return f[i][j] = ans;
  }
}
class Solution {
public:
  int maxOperations(vector<int>& nums) {
    int n = nums.size();
    int f[n][n];
    auto g = [&](int i, int j, int s) -> int {
      memset(f, -1, sizeof(f));
      function<int(int, int)> dfs = [&](int i, int j) -> int {
        if (j - i < 1) {
          return 0;
        }
        if (f[i][j] != -1) {
          return f[i][j];
        }
        int ans = 0;
        if (nums[i] + nums[i + 1] == s) {
          ans = max(ans, 1 + dfs(i + 2, j));
        }
        if (nums[i] + nums[j] == s) {
          ans = max(ans, 1 + dfs(i + 1, j - 1));
        }
        if (nums[j - 1] + nums[j] == s) {
          ans = max(ans, 1 + dfs(i, j - 2));
        }
        return f[i][j] = ans;
      };
      return dfs(i, j);
    };
    int a = g(2, n - 1, nums[0] + nums[1]);
    int b = g(0, n - 3, nums[n - 2] + nums[n - 1]);
    int c = g(1, n - 2, nums[0] + nums[n - 1]);
    return 1 + max({a, b, c});
  }
};
func maxOperations(nums []int) int {
  n := len(nums)
  var g func(i, j, s int) int
  g = func(i, j, s int) int {
    f := make([][]int, n)
    for i := range f {
      f[i] = make([]int, n)
      for j := range f {
        f[i][j] = -1
      }
    }
    var dfs func(i, j int) int
    dfs = func(i, j int) int {
      if j-i < 1 {
        return 0
      }
      if f[i][j] != -1 {
        return f[i][j]
      }
      ans := 0
      if nums[i]+nums[i+1] == s {
        ans = max(ans, 1+dfs(i+2, j))
      }

      if nums[i]+nums[j] == s {
        ans = max(ans, 1+dfs(i+1, j-1))
      }

      if nums[j-1]+nums[j] == s {
        ans = max(ans, 1+dfs(i, j-2))
      }
      f[i][j] = ans
      return ans
    }
    return dfs(i, j)
  }
  a := g(2, n-1, nums[0]+nums[1])
  b := g(0, n-3, nums[n-1]+nums[n-2])
  c := g(1, n-2, nums[0]+nums[n-1])
  return 1 + max(a, b, c)
}
function maxOperations(nums: number[]): number {
  const n = nums.length;
  const f: number[][] = Array.from({ length: n }, () => Array(n));
  const g = (i: number, j: number, s: number): number => {
    f.forEach(row => row.fill(-1));
    const dfs = (i: number, j: number): number => {
      if (j - i < 1) {
        return 0;
      }
      if (f[i][j] !== -1) {
        return f[i][j];
      }
      let ans = 0;
      if (nums[i] + nums[i + 1] === s) {
        ans = Math.max(ans, 1 + dfs(i + 2, j));
      }
      if (nums[i] + nums[j] === s) {
        ans = Math.max(ans, 1 + dfs(i + 1, j - 1));
      }
      if (nums[j - 1] + nums[j] === s) {
        ans = Math.max(ans, 1 + dfs(i, j - 2));
      }
      return (f[i][j] = ans);
    };
    return dfs(i, j);
  };
  const a = g(2, n - 1, nums[0] + nums[1]);
  const b = g(0, n - 3, nums[n - 2] + nums[n - 1]);
  const c = g(1, n - 2, nums[0] + nums[n - 1]);
  return 1 + Math.max(a, b, c);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文