第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
12.2 日内交易
上周统计过周一到周五的涨跌分布,后来又统计了一下股指交割周的周四,竟然只有33.33%上涨 。也是醉了。
统计完日间,再来看下日内,那么大盘日内走势是怎样呢? 对日内操作有指导吗?
时间紧急,话不多说,上分析过程。
# 获取09年以来的上证交易日
import datetime
import seaborn
import pandas as pd
df = DataAPI.TradeCalGet(exchangeCD=u"XSHG",beginDate=u"20090101",endDate=datetime.datetime.now().strftime('%Y%m%d'),field=u"calendarDate,isOpen",pandas="1")
trading_days = df[df.isOpen==1].calendarDate.apply(lambda x:x.replace('-','')).values
trading_days
array(['20090105', '20090106', '20090107', ..., '20151112', '20151113',
'20151116'], dtype=object)
# 获取09年以来的上证指数的分钟线
df = None
for date in trading_days:
try:
temp_df = DataAPI.MktBarHistOneDayGet(securityID='000001.XSHG',date=date, field='barTime,closePrice')[1:]
except:
print 'get data error at %s.' %date
continue
# 日内打分,1表示最高
temp_df['rank'] = temp_df.closePrice.rank(ascending=False)
temp_df['index'] = range(len(temp_df))
if df is None:
df = temp_df
else:
df = df.append(temp_df)
首先看一下30mins线,日内高点和低点的分布图。
bar_length = 30 #30mins bar
def plot(bar_length):
df['bar time'] = df['index'].apply(lambda x:x/bar_length)
highest_count = df[df['rank'] == min(df['rank'])].groupby('bar time')['rank'].count()
lowest_count = df[df['rank'] == max(df['rank'])].groupby('bar time')['rank'].count()
pd.DataFrame({'highest point':highest_count,'lowest point': lowest_count}).plot(figsize=(14,8),kind='bar', title='%s mins bar' %bar_length)
plot(bar_length)
可以看到,日内的最高点和最低点在早盘和尾盘出现频率最高。实际上,确实很多人都会选择在早盘或者尾盘操作。
那15mins和5mins的情况呢?
plot(bar_length=15)
plot(bar_length=5)
5mins比15mins图更清晰。
越靠近开盘,出现日内低点概率越高;而越临近收盘,冲高概率也越高。极点微笑。
今天(20151116)的走势,正巧是低开高收。
对于日内需要调仓,或者做T,可以关注一下该现象。不做任何买卖建议哦。
完。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论