01. Python 工具
02. Python 基础
03. Numpy
- Numpy 简介
- Matplotlib 基础
- Numpy 数组及其索引
- 数组类型
- 数组方法
- 数组排序
- 数组形状
- 对角线
- 数组与字符串的转换
- 数组属性方法总结
- 生成数组的函数
- 矩阵
- 一般函数
- 向量化函数
- 二元运算
- ufunc 对象
- choose 函数实现条件筛选
- 数组广播机制
- 数组读写
- 结构化数组
- 记录数组
- 内存映射
- 从 Matlab 到 Numpy
04. Scipy
05. Python 进阶
- sys 模块简介
- 与操作系统进行交互:os 模块
- CSV 文件和 csv 模块
- 正则表达式和 re 模块
- datetime 模块
- SQL 数据库
- 对象关系映射
- 函数进阶:参数传递,高阶函数,lambda 匿名函数,global 变量,递归
- 迭代器
- 生成器
- with 语句和上下文管理器
- 修饰符
- 修饰符的使用
- operator, functools, itertools, toolz, fn, funcy 模块
- 作用域
- 动态编译
06. Matplotlib
- Pyplot 教程
- 使用 style 来配置 pyplot 风格
- 处理文本(基础)
- 处理文本(数学表达式)
- 图像基础
- 注释
- 标签
- figures, subplots, axes 和 ticks 对象
- 不要迷信默认设置
- 各种绘图实例
07. 使用其他语言进行扩展
- 简介
- Python 扩展模块
- Cython:Cython 基础,将源代码转换成扩展模块
- Cython:Cython 语法,调用其他C库
- Cython:class 和 cdef class,使用 C++
- Cython:Typed memoryviews
- 生成编译注释
- ctypes
08. 面向对象编程
09. Theano 基础
- Theano 简介及其安装
- Theano 基础
- Theano 在 Windows 上的配置
- Theano 符号图结构
- Theano 配置和编译模式
- Theano 条件语句
- Theano 循环:scan(详解)
- Theano 实例:线性回归
- Theano 实例:Logistic 回归
- Theano 实例:Softmax 回归
- Theano 实例:人工神经网络
- Theano 随机数流变量
- Theano 实例:更复杂的网络
- Theano 实例:卷积神经网络
- Theano tensor 模块:基础
- Theano tensor 模块:索引
- Theano tensor 模块:操作符和逐元素操作
- Theano tensor 模块:nnet 子模块
- Theano tensor 模块:conv 子模块
10. 有趣的第三方模块
11. 有用的工具
- pprint 模块:打印 Python 对象
- pickle, cPickle 模块:序列化 Python 对象
- json 模块:处理 JSON 数据
- glob 模块:文件模式匹配
- shutil 模块:高级文件操作
- gzip, zipfile, tarfile 模块:处理压缩文件
- logging 模块:记录日志
- string 模块:字符串处理
- collections 模块:更多数据结构
- requests 模块:HTTP for Human
12. Pandas
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
解微分方程
In [1]:
%pylab inline
Populating the interactive namespace from numpy and matplotlib
积分求解
简单的例子
$\frac{dy}{dt} = sin(t)$In [2]:
def dy_dt(y, t):
return np.sin(t)
积分求解:
In [3]:
from scipy.integrate import odeint
t = np.linspace(0, 2*pi, 100)
result = odeint(dy_dt, 0, t)
In [4]:
fig = figure(figsize=(12,4))
p = plot(t, result, "rx", label=r"$\int_{0}^{x}sin(t) dt $")
p = plot(t, -cos(t) + cos(0), label=r"$cos(0) - cos(t)$")
p = plot(t, dy_dt(0, t), "g-", label=r"$\frac{dy}{dt}(t)$")
l = legend(loc="upper right")
xl = xlabel("t")
https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/OgrniJLwMzyXx6GI-8ihDR6.png alt="">
高阶微分方程
抛物运动(竖直方向):
$$ \frac{d^2x}{dt^2} = g - \frac{D}{m}\frac{dx}{dt} $$
改写成如下形式:
$$y = \left[x, \frac{dx}{dt}\right] $$$$\begin{aligned} \frac{dy_0}{dt} &= y_1 \\ \frac{dy_1}{dt} &= -g - \frac{D}{m} y_1 \\ \end{aligned} $$In [5]:
def dy_dt(y, t):
"""Governing equations for projectile motion with drag.
y[0] = position
y[1] = velocity
g = gravity (m/s2)
D = drag (1/s) = force/velocity
m = mass (kg)
"""
g = -9.8
D = 0.1
m = 0.15
dy1 = g - (D/m) * y[1]
dy0 = y[1] if y[0] >= 0 else 0.
return [dy0, dy1]
In [6]:
position_0 = 0.
velocity_0 = 100
t = linspace(0, 12, 100)
y = odeint(dy_dt, [position_0, velocity_0], t)
In [7]:
p = plot(t, y[:,0])
yl = ylabel("Height (m)")
xl = xlabel("Time (s)")
https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/sGFWwCcZLv4YtYic-aJdJDl.png alt="">
In [8]:
y, infodict = odeint(dy_dt, [position_0, velocity_0], t, full_output=True, printmessg=True, )
print sorted(infodict.keys())
print "cumulative number of function evaluations at each calculated point:", infodict['nfe']
print "cumulative number of time steps", infodict['nst']
Integration successful.
['hu', 'imxer', 'leniw', 'lenrw', 'message', 'mused', 'nfe', 'nje', 'nqu', 'nst', 'tcur', 'tolsf', 'tsw']
cumulative number of function evaluations at each calculated point: [ 45 49 51 53 55 59 61 61 63 65 67 67 69 71 73 73 75 77
77 79 79 81 81 83 85 85 87 87 89 89 91 91 93 95 95 97
97 99 99 101 101 103 103 105 107 107 109 109 111 111 113 113 115 115
117 117 119 119 121 121 123 123 123 125 125 127 127 129 129 131 131 131
133 133 135 135 135 137 137 139 139 139 141 141 143 143 143 145 145 147
147 149 149 149 154 158 274 280 280]
cumulative number of time steps [ 20 22 23 24 25 27 28 28 29 30 31 31 32 33 34 34 35 36
36 37 37 38 38 39 40 40 41 41 42 42 43 43 44 45 45 46
46 47 47 48 48 49 49 50 51 51 52 52 53 53 54 54 55 55
56 56 57 57 58 58 59 59 59 60 60 61 61 62 62 63 63 63
64 64 65 65 65 66 66 67 67 67 68 68 69 69 69 70 70 71
71 72 72 72 73 75 130 133 133]
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论