返回介绍

solution / 1100-1199 / 1145.Binary Tree Coloring Game / README_EN

发布于 2024-06-17 01:03:23 字数 8395 浏览 0 评论 0 收藏 0

1145. Binary Tree Coloring Game

中文文档

Description

Two players play a turn based game on a binary tree. We are given the root of this binary tree, and the number of nodes n in the tree. n is odd, and each node has a distinct value from 1 to n.

Initially, the first player names a value x with 1 <= x <= n, and the second player names a value y with 1 <= y <= n and y != x. The first player colors the node with value x red, and the second player colors the node with value y blue.

Then, the players take turns starting with the first player. In each turn, that player chooses a node of their color (red if player 1, blue if player 2) and colors an uncolored neighbor of the chosen node (either the left child, right child, or parent of the chosen node.)

If (and only if) a player cannot choose such a node in this way, they must pass their turn. If both players pass their turn, the game ends, and the winner is the player that colored more nodes.

You are the second player. If it is possible to choose such a y to ensure you win the game, return true. If it is not possible, return false.

 

Example 1:

Input: root = [1,2,3,4,5,6,7,8,9,10,11], n = 11, x = 3
Output: true
Explanation: The second player can choose the node with value 2.

Example 2:

Input: root = [1,2,3], n = 3, x = 1
Output: false

 

Constraints:

  • The number of nodes in the tree is n.
  • 1 <= x <= n <= 100
  • n is odd.
  • 1 <= Node.val <= n
  • All the values of the tree are unique.

Solutions

Solution 1: DFS

First, we use DFS to find the node where player 1's colored point $x$ is located, denoted as $node$.

Next, we count the number of nodes in the left and right subtrees of $node$, denoted as $l$ and $r$ respectively, and the number of nodes in the direction of $node$'s parent node is $n - l - r - 1$. As long as $\max(l, r, n - l - r - 1) > \frac{n}{2}$, player 2 has a winning strategy.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the total number of nodes.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def btreeGameWinningMove(self, root: Optional[TreeNode], n: int, x: int) -> bool:
    def dfs(root):
      if root is None or root.val == x:
        return root
      return dfs(root.left) or dfs(root.right)

    def count(root):
      if root is None:
        return 0
      return 1 + count(root.left) + count(root.right)

    node = dfs(root)
    l, r = count(node.left), count(node.right)
    return max(l, r, n - l - r - 1) > n // 2
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public boolean btreeGameWinningMove(TreeNode root, int n, int x) {
    TreeNode node = dfs(root, x);
    int l = count(node.left);
    int r = count(node.right);
    return Math.max(Math.max(l, r), n - l - r - 1) > n / 2;
  }

  private TreeNode dfs(TreeNode root, int x) {
    if (root == null || root.val == x) {
      return root;
    }
    TreeNode node = dfs(root.left, x);
    return node == null ? dfs(root.right, x) : node;
  }

  private int count(TreeNode root) {
    if (root == null) {
      return 0;
    }
    return 1 + count(root.left) + count(root.right);
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  bool btreeGameWinningMove(TreeNode* root, int n, int x) {
    auto node = dfs(root, x);
    int l = count(node->left), r = count(node->right);
    return max({l, r, n - l - r - 1}) > n / 2;
  }

  TreeNode* dfs(TreeNode* root, int x) {
    if (!root || root->val == x) {
      return root;
    }
    auto node = dfs(root->left, x);
    return node ? node : dfs(root->right, x);
  }

  int count(TreeNode* root) {
    if (!root) {
      return 0;
    }
    return 1 + count(root->left) + count(root->right);
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func btreeGameWinningMove(root *TreeNode, n int, x int) bool {
  var dfs func(*TreeNode) *TreeNode
  dfs = func(root *TreeNode) *TreeNode {
    if root == nil || root.Val == x {
      return root
    }
    node := dfs(root.Left)
    if node != nil {
      return node
    }
    return dfs(root.Right)
  }

  var count func(*TreeNode) int
  count = func(root *TreeNode) int {
    if root == nil {
      return 0
    }
    return 1 + count(root.Left) + count(root.Right)
  }

  node := dfs(root)
  l, r := count(node.Left), count(node.Right)
  return max(max(l, r), n-l-r-1) > n/2
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function btreeGameWinningMove(root: TreeNode | null, n: number, x: number): boolean {
  const dfs = (root: TreeNode | null): TreeNode | null => {
    if (!root || root.val === x) {
      return root;
    }
    return dfs(root.left) || dfs(root.right);
  };

  const count = (root: TreeNode | null): number => {
    if (!root) {
      return 0;
    }
    return 1 + count(root.left) + count(root.right);
  };

  const node = dfs(root);
  const l = count(node.left);
  const r = count(node.right);
  return Math.max(l, r, n - l - r - 1) > n / 2;
}
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *   this.val = (val===undefined ? 0 : val)
 *   this.left = (left===undefined ? null : left)
 *   this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} n
 * @param {number} x
 * @return {boolean}
 */
var btreeGameWinningMove = function (root, n, x) {
  const dfs = root => {
    if (!root || root.val === x) {
      return root;
    }
    return dfs(root.left) || dfs(root.right);
  };

  const count = root => {
    if (!root) {
      return 0;
    }
    return 1 + count(root.left) + count(root.right);
  };

  const node = dfs(root);
  const l = count(node.left);
  const r = count(node.right);
  return Math.max(l, r, n - l - r - 1) > n / 2;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文