- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
ElasticSearch - 计划内停机升级的操作流程
Elasticsearch 作为一个新兴项目,版本更新非常快。而且每次版本更新都或多或少带有一些重要的性能优化、稳定性提升等特性。可以说,ES 集群的版本升级,是目前 ES 运维必然要做的一项工作。
按照 ES 官方设计,有 restart upgrade 和 rolling upgrade 两种可选的升级方式。对于 1.0 版本以上的用户,推荐采用 rolling upgreade 方式。
但是,对于主要负载是数据写入的 Elastic Stack 场景来说,却并不是这样!
rolling upgrade 的步骤大致如下:
- 暂停分片分配;
- 单节点下线升级重启;
- 开启分片分配;
- 等待集群状态变绿后继续上述步骤。
实际运行中,步骤 2 的 ES 单节点从 restart 到加入集群,大概要 100s 左右的时间。也就是说,这 100s 内,该节点上的所有分片都是 unassigned 状态。而按照 Elasticsearch 的设计,数据写入需要至少达到 replica/2+1
个分片完成才能算完成。也就意味着你所有索引都必须至少有 1 个以上副本分片开启。
但事实上,很多日志场景,由于写入性能上的要求要高于数据可靠性的要求,大家普遍减小了副本数量,甚至直接关掉副本复制。这样一来,整个 rolling upgrade 期间,数据写入就会受到严重影响,完全丧失了 rolling 的必要性。
其次,步骤 3 中的 ES 分片均衡过程中,由于 ES 的副本分片数据都需要从主分片走网络复制重新传输一次,而由于重启,新升级的节点上的分片肯定全是副本分片(除非压根没副本)。在数据量较大的情况下,这个步骤耗时可能是几十分钟甚至以小时计。而且并发和限速上稍微不注意,可能导致分片均衡的带宽直接占满网卡,正常写入也还是受到影响。
所以,对于写入压力较大,数据可靠性要求偏低的实时日志场景,依然建议大家进行主动停机式的 restart upgrade。
restart upgrade 的步骤如下:
- 首先适当加大集群的数据恢复和分片均衡并发度以及磁盘限速:
# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d '{
"persistent" : {
"cluster" : {
"routing" : {
"allocation" : {
"disable_allocation" : "false",
"cluster_concurrent_rebalance" : "5",
"node_concurrent_recoveries" : "5",
"enable" : "all"
}
}
},
"indices" : {
"recovery" : {
"concurrent_streams" : "30",
"max_bytes_per_sec" : "2gb"
}
}
},
"transient" : {
"cluster" : {
"routing" : {
"allocation" : {
"enable" : "all"
}
}
}
}
}'
- 暂停分片分配:
# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d '{
"transient" : {
"cluster.routing.allocation.enable" : "none"
}
}'
- 通过配置管理工具下发新版本软件包。
- 公告周知后,停止数据写入进程(即 logstash indexer 等)
- 如果使用 Elasticsearch 1.6 版本以上,可以手动运行一次 synced flush,同步副本分片的 commit id,缩小恢复时的网络传输带宽:
# curl -XPOST http://127.0.0.1:9200/_flush/synced
- 全集群统一停止进程,更新软件包,重新启动。
- 等待各节点都加入到集群以后,恢复分片分配:
# curl -XPUT http://127.0.0.1:9200/_cluster/settings -d '{
"transient" : {
"cluster.routing.allocation.enable" : "all"
}
}'
由于同时启停,主分片几乎可以同时本地恢复,整个集群从 red 变成 yellow 只需要 2 分钟左右。而后的副本分片,如果有 synced flush,同样本地恢复,否则网络恢复总耗时,视数据大小而定,会明显大于单节点恢复的耗时。
- 如果有 synced flush,建议等待集群变成 green 状态后,恢复写入;否则在集群变成 yellow 状态之后,即可着手开始恢复数据写入进程。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论