返回介绍

solution / 1200-1299 / 1298.Maximum Candies You Can Get from Boxes / README_EN

发布于 2024-06-17 01:03:21 字数 7345 浏览 0 评论 0 收藏 0

1298. Maximum Candies You Can Get from Boxes

中文文档

Description

You have n boxes labeled from 0 to n - 1. You are given four arrays: status, candies, keys, and containedBoxes where:

  • status[i] is 1 if the ith box is open and 0 if the ith box is closed,
  • candies[i] is the number of candies in the ith box,
  • keys[i] is a list of the labels of the boxes you can open after opening the ith box.
  • containedBoxes[i] is a list of the boxes you found inside the ith box.

You are given an integer array initialBoxes that contains the labels of the boxes you initially have. You can take all the candies in any open box and you can use the keys in it to open new boxes and you also can use the boxes you find in it.

Return _the maximum number of candies you can get following the rules above_.

 

Example 1:

Input: status = [1,0,1,0], candies = [7,5,4,100], keys = [[],[],[1],[]], containedBoxes = [[1,2],[3],[],[]], initialBoxes = [0]
Output: 16
Explanation: You will be initially given box 0. You will find 7 candies in it and boxes 1 and 2.
Box 1 is closed and you do not have a key for it so you will open box 2. You will find 4 candies and a key to box 1 in box 2.
In box 1, you will find 5 candies and box 3 but you will not find a key to box 3 so box 3 will remain closed.
Total number of candies collected = 7 + 4 + 5 = 16 candy.

Example 2:

Input: status = [1,0,0,0,0,0], candies = [1,1,1,1,1,1], keys = [[1,2,3,4,5],[],[],[],[],[]], containedBoxes = [[1,2,3,4,5],[],[],[],[],[]], initialBoxes = [0]
Output: 6
Explanation: You have initially box 0. Opening it you can find boxes 1,2,3,4 and 5 and their keys.
The total number of candies will be 6.

 

Constraints:

  • n == status.length == candies.length == keys.length == containedBoxes.length
  • 1 <= n <= 1000
  • status[i] is either 0 or 1.
  • 1 <= candies[i] <= 1000
  • 0 <= keys[i].length <= n
  • 0 <= keys[i][j] < n
  • All values of keys[i] are unique.
  • 0 <= containedBoxes[i].length <= n
  • 0 <= containedBoxes[i][j] < n
  • All values of containedBoxes[i] are unique.
  • Each box is contained in one box at most.
  • 0 <= initialBoxes.length <= n
  • 0 <= initialBoxes[i] < n

Solutions

Solution 1

class Solution:
  def maxCandies(
    self,
    status: List[int],
    candies: List[int],
    keys: List[List[int]],
    containedBoxes: List[List[int]],
    initialBoxes: List[int],
  ) -> int:
    q = deque([i for i in initialBoxes if status[i] == 1])
    ans = sum(candies[i] for i in initialBoxes if status[i] == 1)
    has = set(initialBoxes)
    took = {i for i in initialBoxes if status[i] == 1}

    while q:
      i = q.popleft()
      for k in keys[i]:
        status[k] = 1
        if k in has and k not in took:
          ans += candies[k]
          took.add(k)
          q.append(k)
      for j in containedBoxes[i]:
        has.add(j)
        if status[j] and j not in took:
          ans += candies[j]
          took.add(j)
          q.append(j)
    return ans
class Solution {
  public int maxCandies(
    int[] status, int[] candies, int[][] keys, int[][] containedBoxes, int[] initialBoxes) {
    int ans = 0;
    int n = status.length;
    boolean[] has = new boolean[n];
    boolean[] took = new boolean[n];
    Deque<Integer> q = new ArrayDeque<>();
    for (int i : initialBoxes) {
      has[i] = true;
      if (status[i] == 1) {
        ans += candies[i];
        took[i] = true;
        q.offer(i);
      }
    }
    while (!q.isEmpty()) {
      int i = q.poll();
      for (int k : keys[i]) {
        status[k] = 1;
        if (has[k] && !took[k]) {
          ans += candies[k];
          took[k] = true;
          q.offer(k);
        }
      }
      for (int j : containedBoxes[i]) {
        has[j] = true;
        if (status[j] == 1 && !took[j]) {
          ans += candies[j];
          took[j] = true;
          q.offer(j);
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  int maxCandies(vector<int>& status, vector<int>& candies, vector<vector<int>>& keys, vector<vector<int>>& containedBoxes, vector<int>& initialBoxes) {
    int ans = 0;
    int n = status.size();
    vector<bool> has(n);
    vector<bool> took(n);
    queue<int> q;
    for (int& i : initialBoxes) {
      has[i] = true;
      if (status[i]) {
        ans += candies[i];
        took[i] = true;
        q.push(i);
      }
    }
    while (!q.empty()) {
      int i = q.front();
      q.pop();
      for (int k : keys[i]) {
        status[k] = 1;
        if (has[k] && !took[k]) {
          ans += candies[k];
          took[k] = true;
          q.push(k);
        }
      }
      for (int j : containedBoxes[i]) {
        has[j] = true;
        if (status[j] && !took[j]) {
          ans += candies[j];
          took[j] = true;
          q.push(j);
        }
      }
    }
    return ans;
  }
};
func maxCandies(status []int, candies []int, keys [][]int, containedBoxes [][]int, initialBoxes []int) int {
  ans := 0
  n := len(status)
  has := make([]bool, n)
  took := make([]bool, n)
  var q []int
  for _, i := range initialBoxes {
    has[i] = true
    if status[i] == 1 {
      ans += candies[i]
      took[i] = true
      q = append(q, i)
    }
  }
  for len(q) > 0 {
    i := q[0]
    q = q[1:]
    for _, k := range keys[i] {
      status[k] = 1
      if has[k] && !took[k] {
        ans += candies[k]
        took[k] = true
        q = append(q, k)
      }
    }
    for _, j := range containedBoxes[i] {
      has[j] = true
      if status[j] == 1 && !took[j] {
        ans += candies[j]
        took[j] = true
        q = append(q, j)
      }
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文