- Socket 编程发展
- OpenResty 简介
- Lua 入门
- Nginx
- 子查询
- 不同阶段共享变量
- 防止 SQL 注入
- 如何发起新 HTTP 请求
- 访问有授权验证的 Redis
- select+set_keepalive 组合操作引起的数据读写错误
- redis 接口的二次封装(简化建连、拆连等细节)
- redis 接口的二次封装(发布订阅)
- pipeline 压缩请求数量
- script 压缩复杂请求
- 动态生成的 lua-resty-redis 模块方法
- LuaCjsonLibrary
- json解析的异常捕获
- 稀疏数组
- 空table编码为array还是object
- PostgresNginxModule
- 调用方式简介
- 不支持事务
- 超时
- 健康监测
- SQL注入
- LuaNginxModule
- 执行阶段概念
- 正确的记录日志
- 热装载代码
- 阻塞操作
- 缓存
- sleep
- 定时任务
- 禁止某些终端访问
- 请求返回后继续执行
- 调试
- 请求中断后的处理
- 我的 lua 代码需要调优么
- 变量的共享范围
- 动态限速
- shared.dict 非队列性质
- 正确使用长链接
- 如何引用第三方 resty 库
- 典型应用场景
- 怎样理解 cosocket
- 如何安全启动唯一实例的 timer
- 如何正确的解析域名
- LuaRestyDNSLibrary
- 使用动态 DNS 来完成 HTTP 请求
- LuaRestyLock
- 缓存失效风暴
- HTTPS 时代
- 动态加载证书和 OCSP stapling
- TLS session resumption
- 测试
- Web 服务
- 火焰图
- 如何定位问题
- module 是邪恶的
- FFI
- 什么是 JIT
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
面向对象编程
类
在 Lua 中,我们可以使用表和函数实现面向对象。将函数和相关的数据放置于同一个表中就形成了一个对象。
请看文件名为 account.lua
的源码:
local _M = {}
local mt = { __index = _M }
function _M.deposit (self, v)
self.balance = self.balance + v
end
function _M.withdraw (self, v)
if self.balance > v then
self.balance = self.balance - v
else
error("insufficient funds")
end
end
function _M.new (self, balance)
balance = balance or 0
return setmetatable({balance = balance}, mt)
end
return _M
引用代码示例:
local account = require("account")
local a = account:new()
a:deposit(100)
local b = account:new()
b:deposit(50)
print(a.balance) --> output: 100
print(b.balance) --> output: 50
上面这段代码 "setmetatable({balance = balance}, mt)",其中 mt 代表 { __index = _M }
,这句话值得注意。根据我们在元表这一章学到的知识,我们明白,setmetatable 将 _M
作为新建表的原型,所以在自己的表内找不到 'deposit'、'withdraw' 这些方法和变量的时候,便会到 __index 所指定的 _M 类型中去寻找。
继承
继承可以用元表实现,它提供了在父类中查找存在的方法和变量的机制。在 Lua 中是不推荐使用继承方式完成构造的,这样做引入的问题可能比解决的问题要多,下面一个是字符串操作类库,给大家演示一下。
---------- s_base.lua
local _M = {}
local mt = { __index = _M }
function _M.upper (s)
return string.upper(s)
end
return _M
---------- s_more.lua
local s_base = require("s_base")
local _M = {}
_M = setmetatable(_M, { __index = s_base })
function _M.lower (s)
return string.lower(s)
end
return _M
---------- test.lua
local s_more = require("s_more")
print(s_more.upper("Hello")) -- output: HELLO
print(s_more.lower("Hello")) -- output: hello
成员私有性
在动态语言中引入成员私有性并没有太大的必要,反而会显著增加运行时的开销,毕竟这种检查无法像许多静态语言那样在编译期完成。下面的技巧把对象作为各方法的 upvalue,本身是很巧妙的,但会让子类继承变得困难,同时构造函数动态创建了函数,会导致构造函数无法被 JIT 编译。
在 Lua 中,成员的私有性,使用类似于函数闭包的形式来实现。在我们之前的银行账户的例子中,我们使用一个工厂方法来创建新的账户实例,通过工厂方法对外提供的闭包来暴露对外接口。而不想暴露在外的例如 balance 成员变量,则被很好的隐藏起来。
function newAccount (initialBalance)
local self = {balance = initialBalance}
local withdraw = function (v)
self.balance = self.balance - v
end
local deposit = function (v)
self.balance = self.balance + v
end
local getBalance = function () return self.balance end
return {
withdraw = withdraw,
deposit = deposit,
getBalance = getBalance
}
end
a = newAccount(100)
a.deposit(100)
print(a.getBalance()) --> 200
print(a.balance) --> nil
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论