返回介绍

solution / 1800-1899 / 1833.Maximum Ice Cream Bars / README_EN

发布于 2024-06-17 01:03:14 字数 4496 浏览 0 评论 0 收藏 0

1833. Maximum Ice Cream Bars

中文文档

Description

It is a sweltering summer day, and a boy wants to buy some ice cream bars.

At the store, there are n ice cream bars. You are given an array costs of length n, where costs[i] is the price of the ith ice cream bar in coins. The boy initially has coins coins to spend, and he wants to buy as many ice cream bars as possible. 

Note: The boy can buy the ice cream bars in any order.

Return _the maximum number of ice cream bars the boy can buy with _coins_ coins._

You must solve the problem by counting sort.

 

Example 1:

Input: costs = [1,3,2,4,1], coins = 7
Output: 4
Explanation: The boy can buy ice cream bars at indices 0,1,2,4 for a total price of 1 + 3 + 2 + 1 = 7.

Example 2:

Input: costs = [10,6,8,7,7,8], coins = 5
Output: 0
Explanation: The boy cannot afford any of the ice cream bars.

Example 3:

Input: costs = [1,6,3,1,2,5], coins = 20
Output: 6
Explanation: The boy can buy all the ice cream bars for a total price of 1 + 6 + 3 + 1 + 2 + 5 = 18.

 

Constraints:

  • costs.length == n
  • 1 <= n <= 105
  • 1 <= costs[i] <= 105
  • 1 <= coins <= 108

Solutions

Solution 1: Greedy + Sorting

To buy as many ice creams as possible, and they can be purchased in any order, we should prioritize choosing ice creams with lower prices.

Sort the $costs$ array, and then start buying from the ice cream with the lowest price, one by one, until it is no longer possible to buy, and return the number of ice creams that can be bought.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$, where $n$ is the length of the $costs$ array.

class Solution:
  def maxIceCream(self, costs: List[int], coins: int) -> int:
    costs.sort()
    for i, c in enumerate(costs):
      if coins < c:
        return i
      coins -= c
    return len(costs)
class Solution {
  public int maxIceCream(int[] costs, int coins) {
    Arrays.sort(costs);
    int n = costs.length;
    for (int i = 0; i < n; ++i) {
      if (coins < costs[i]) {
        return i;
      }
      coins -= costs[i];
    }
    return n;
  }
}
class Solution {
public:
  int maxIceCream(vector<int>& costs, int coins) {
    sort(costs.begin(), costs.end());
    int n = costs.size();
    for (int i = 0; i < n; ++i) {
      if (coins < costs[i]) return i;
      coins -= costs[i];
    }
    return n;
  }
};
func maxIceCream(costs []int, coins int) int {
  sort.Ints(costs)
  for i, c := range costs {
    if coins < c {
      return i
    }
    coins -= c
  }
  return len(costs)
}
function maxIceCream(costs: number[], coins: number): number {
  costs.sort((a, b) => a - b);
  const n = costs.length;
  for (let i = 0; i < n; ++i) {
    if (coins < costs[i]) {
      return i;
    }
    coins -= costs[i];
  }
  return n;
}
/**
 * @param {number[]} costs
 * @param {number} coins
 * @return {number}
 */
var maxIceCream = function (costs, coins) {
  costs.sort((a, b) => a - b);
  const n = costs.length;
  for (let i = 0; i < n; ++i) {
    if (coins < costs[i]) {
      return i;
    }
    coins -= costs[i];
  }
  return n;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文