返回介绍

solution / 0000-0099 / 0042.Trapping Rain Water / README_EN

发布于 2024-06-17 01:04:40 字数 5711 浏览 0 评论 0 收藏 0

42. Trapping Rain Water

中文文档

Description

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

 

Example 1:

Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

Example 2:

Input: height = [4,2,0,3,2,5]
Output: 9

 

Constraints:

  • n == height.length
  • 1 <= n <= 2 * 104
  • 0 <= height[i] <= 105

Solutions

Solution 1: Dynamic Programming

We define $left[i]$ as the height of the highest bar to the left of and including the position at index $i$, and $right[i]$ as the height of the highest bar to the right of and including the position at index $i$. Therefore, the amount of rainwater that can be trapped at index $i$ is $min(left[i], right[i]) - height[i]$. We traverse the array to calculate $left[i]$ and $right[i]$, and the final answer is $\sum_{i=0}^{n-1} min(left[i], right[i]) - height[i]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.

class Solution:
  def trap(self, height: List[int]) -> int:
    n = len(height)
    left = [height[0]] * n
    right = [height[-1]] * n
    for i in range(1, n):
      left[i] = max(left[i - 1], height[i])
      right[n - i - 1] = max(right[n - i], height[n - i - 1])
    return sum(min(l, r) - h for l, r, h in zip(left, right, height))
class Solution {
  public int trap(int[] height) {
    int n = height.length;
    int[] left = new int[n];
    int[] right = new int[n];
    left[0] = height[0];
    right[n - 1] = height[n - 1];
    for (int i = 1; i < n; ++i) {
      left[i] = Math.max(left[i - 1], height[i]);
      right[n - i - 1] = Math.max(right[n - i], height[n - i - 1]);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += Math.min(left[i], right[i]) - height[i];
    }
    return ans;
  }
}
class Solution {
public:
  int trap(vector<int>& height) {
    int n = height.size();
    int left[n], right[n];
    left[0] = height[0];
    right[n - 1] = height[n - 1];
    for (int i = 1; i < n; ++i) {
      left[i] = max(left[i - 1], height[i]);
      right[n - i - 1] = max(right[n - i], height[n - i - 1]);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += min(left[i], right[i]) - height[i];
    }
    return ans;
  }
};
func trap(height []int) (ans int) {
  n := len(height)
  left := make([]int, n)
  right := make([]int, n)
  left[0], right[n-1] = height[0], height[n-1]
  for i := 1; i < n; i++ {
    left[i] = max(left[i-1], height[i])
    right[n-i-1] = max(right[n-i], height[n-i-1])
  }
  for i, h := range height {
    ans += min(left[i], right[i]) - h
  }
  return
}
function trap(height: number[]): number {
  const n = height.length;
  const left: number[] = new Array(n).fill(height[0]);
  const right: number[] = new Array(n).fill(height[n - 1]);
  for (let i = 1; i < n; ++i) {
    left[i] = Math.max(left[i - 1], height[i]);
    right[n - i - 1] = Math.max(right[n - i], height[n - i - 1]);
  }
  let ans = 0;
  for (let i = 0; i < n; ++i) {
    ans += Math.min(left[i], right[i]) - height[i];
  }
  return ans;
}
impl Solution {
  #[allow(dead_code)]
  pub fn trap(height: Vec<i32>) -> i32 {
    let n = height.len();
    let mut left: Vec<i32> = vec![0; n];
    let mut right: Vec<i32> = vec![0; n];

    left[0] = height[0];
    right[n - 1] = height[n - 1];

    // Initialize the left & right vector
    for i in 1..n {
      left[i] = std::cmp::max(left[i - 1], height[i]);
      right[n - i - 1] = std::cmp::max(right[n - i], height[n - i - 1]);
    }

    let mut ans = 0;

    // Calculate the ans
    for i in 0..n {
      ans += std::cmp::min(left[i], right[i]) - height[i];
    }

    ans
  }
}
public class Solution {
  public int Trap(int[] height) {
    int n = height.Length;
    int[] left = new int[n];
    int[] right = new int[n];
    left[0] = height[0];
    right[n - 1] = height[n - 1];
    for (int i = 1; i < n; ++i) {
      left[i] = Math.Max(left[i - 1], height[i]);
      right[n - i - 1] = Math.Max(right[n - i], height[n - i - 1]);
    }
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += Math.Min(left[i], right[i]) - height[i];
    }
    return ans;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文