返回介绍

solution / 0200-0299 / 0225.Implement Stack using Queues / README_EN

发布于 2024-06-17 01:04:03 字数 7902 浏览 0 评论 0 收藏 0

225. Implement Stack using Queues

中文文档

Description

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (push, top, pop, and empty).

Implement the MyStack class:

  • void push(int x) Pushes element x to the top of the stack.
  • int pop() Removes the element on the top of the stack and returns it.
  • int top() Returns the element on the top of the stack.
  • boolean empty() Returns true if the stack is empty, false otherwise.

Notes:

  • You must use only standard operations of a queue, which means that only push to back, peek/pop from front, size and is empty operations are valid.
  • Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.

 

Example 1:

Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]

Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False

 

Constraints:

  • 1 <= x <= 9
  • At most 100 calls will be made to push, pop, top, and empty.
  • All the calls to pop and top are valid.

 

Follow-up: Can you implement the stack using only one queue?

Solutions

Solution 1: Two Queues

We use two queues $q_1$ and $q_2$, where $q_1$ is used to store the elements in the stack, and $q_2$ is used to assist in implementing the stack operations.

  • push operation: Push the element into $q_2$, then pop the elements in $q_1$ one by one and push them into $q_2$, finally swap the references of $q_1$ and $q_2$. The time complexity is $O(n)$.
  • pop operation: Directly pop the front element of $q_1$. The time complexity is $O(1)$.
  • top operation: Directly return the front element of $q_1$. The time complexity is $O(1)$.
  • empty operation: Check whether $q_1$ is empty. The time complexity is $O(1)$.

The space complexity is $O(n)$, where $n$ is the number of elements in the stack.

class MyStack:
  def __init__(self):
    self.q1 = deque()
    self.q2 = deque()

  def push(self, x: int) -> None:
    self.q2.append(x)
    while self.q1:
      self.q2.append(self.q1.popleft())
    self.q1, self.q2 = self.q2, self.q1

  def pop(self) -> int:
    return self.q1.popleft()

  def top(self) -> int:
    return self.q1[0]

  def empty(self) -> bool:
    return len(self.q1) == 0


# Your MyStack object will be instantiated and called as such:
# obj = MyStack()
# obj.push(x)
# param_2 = obj.pop()
# param_3 = obj.top()
# param_4 = obj.empty()
import java.util.Deque;

class MyStack {
  private Deque<Integer> q1 = new ArrayDeque<>();
  private Deque<Integer> q2 = new ArrayDeque<>();

  public MyStack() {
  }

  public void push(int x) {
    q2.offer(x);
    while (!q1.isEmpty()) {
      q2.offer(q1.poll());
    }
    Deque<Integer> q = q1;
    q1 = q2;
    q2 = q;
  }

  public int pop() {
    return q1.poll();
  }

  public int top() {
    return q1.peek();
  }

  public boolean empty() {
    return q1.isEmpty();
  }
}

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack obj = new MyStack();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.top();
 * boolean param_4 = obj.empty();
 */
class MyStack {
public:
  MyStack() {
  }

  void push(int x) {
    q2.push(x);
    while (!q1.empty()) {
      q2.push(q1.front());
      q1.pop();
    }
    swap(q1, q2);
  }

  int pop() {
    int x = q1.front();
    q1.pop();
    return x;
  }

  int top() {
    return q1.front();
  }

  bool empty() {
    return q1.empty();
  }

private:
  queue<int> q1;
  queue<int> q2;
};

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack* obj = new MyStack();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->top();
 * bool param_4 = obj->empty();
 */
type MyStack struct {
  q1 []int
  q2 []int
}

func Constructor() MyStack {
  return MyStack{}
}

func (this *MyStack) Push(x int) {
  this.q2 = append(this.q2, x)
  for len(this.q1) > 0 {
    this.q2 = append(this.q2, this.q1[0])
    this.q1 = this.q1[1:]
  }
  this.q1, this.q2 = this.q2, this.q1
}

func (this *MyStack) Pop() int {
  x := this.q1[0]
  this.q1 = this.q1[1:]
  return x
}

func (this *MyStack) Top() int {
  return this.q1[0]
}

func (this *MyStack) Empty() bool {
  return len(this.q1) == 0
}

/**
 * Your MyStack object will be instantiated and called as such:
 * obj := Constructor();
 * obj.Push(x);
 * param_2 := obj.Pop();
 * param_3 := obj.Top();
 * param_4 := obj.Empty();
 */
class MyStack {
  q1: number[] = [];
  q2: number[] = [];

  constructor() {}

  push(x: number): void {
    this.q2.push(x);
    while (this.q1.length) {
      this.q2.push(this.q1.shift()!);
    }
    [this.q1, this.q2] = [this.q2, this.q1];
  }

  pop(): number {
    return this.q1.shift()!;
  }

  top(): number {
    return this.q1[0];
  }

  empty(): boolean {
    return this.q1.length === 0;
  }
}

/**
 * Your MyStack object will be instantiated and called as such:
 * var obj = new MyStack()
 * obj.push(x)
 * var param_2 = obj.pop()
 * var param_3 = obj.top()
 * var param_4 = obj.empty()
 */
use std::collections::VecDeque;

struct MyStack {
  /// There could only be two status at all time
  /// 1. One contains N elements, the other is empty
  /// 2. One contains N - 1 elements, the other contains exactly 1 element
  q_1: VecDeque<i32>,
  q_2: VecDeque<i32>,
  // Either 1 or 2, originally begins from 1
  index: i32,
}

impl MyStack {
  fn new() -> Self {
    Self {
      q_1: VecDeque::new(),
      q_2: VecDeque::new(),
      index: 1,
    }
  }

  fn move_data(&mut self) {
    // Always move from q1 to q2
    assert!(self.q_2.len() == 1);
    while !self.q_1.is_empty() {
      self.q_2.push_back(self.q_1.pop_front().unwrap());
    }
    let tmp = self.q_1.clone();
    self.q_1 = self.q_2.clone();
    self.q_2 = tmp;
  }

  fn push(&mut self, x: i32) {
    self.q_2.push_back(x);
    self.move_data();
  }

  fn pop(&mut self) -> i32 {
    self.q_1.pop_front().unwrap()
  }

  fn top(&mut self) -> i32 {
    *self.q_1.front().unwrap()
  }

  fn empty(&self) -> bool {
    self.q_1.is_empty()
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文