- Docker 简介
- 什么是 Docker
- 为什么要用 Docker
- 基本概念
- 镜像
- 容器
- 仓库
- 安装 Docker
- Ubuntu
- Debian
- Fedora
- CentOS
- Raspberry Pi
- macOS 安装 Docker Desktop CE
- Windows 10
- 镜像加速器
- 使用镜像
- 获取镜像
- 列出镜像
- 删除本地镜像
- 利用 commit 理解镜像构成
- 使用 Dockerfile 定制镜像
- Dockerfile 指令详解
- COPY 复制文件
- ADD 更高级的复制文件
- CMD 容器启动命令
- ENTRYPOINT 入口点
- ENV 设置环境变量
- ARG 构建参数
- VOLUME 定义匿名卷
- EXPOSE 暴露端口
- WORKDIR 指定工作目录
- USER 指定当前用户
- HEALTHCHECK 健康检查
- ONBUILD 为他人作嫁衣裳
- 参考文档
- Dockerfile 多阶段构建
- 实战多阶段构建 Laravel 镜像
- 构建多种系统架构支持的 Docker 镜像
- 使用 buildx 构建多种系统架构支持的 Docker 镜像
- Docker v18.09 版本使用 BuildKit 构建镜像
- Docker v19.03 版本使用 BuildKit 构建镜像
- 其它制作镜像的方式
- 实现原理
- 操作容器
- 启动
- 守护态运行
- 终止
- 进入容器
- 导出和导入
- 删除
- 访问仓库
- Docker Hub
- 私有仓库
- 私有仓库高级配置
- Nexus 3
- 数据管理
- 数据卷
- 挂载主机目录
- 使用网络
- 外部访问容器
- 容器互联
- 配置 DNS
- 高级网络配置
- 快速配置指南
- 容器访问控制
- 端口映射实现
- 配置 docker0 网桥
- 自定义网桥
- 工具和示例
- 编辑网络配置文件
- 实例:创建一个点到点连接
- Docker Compose
- 简介
- 安装与卸载
- 使用
- 命令说明
- Compose 模板文件
- 实战 Django
- 实战 Rails
- 实战 WordPress
- Swarm mode
- 基本概念
- 创建 Swarm 集群
- 部署服务
- 使用 compose 文件
- 管理密钥
- 管理配置信息
- 滚动升级
- 安全
- 内核命名空间
- 控制组
- 服务端防护
- 内核能力机制
- 其它安全特性
- 总结
- 底层实现
- 基本架构
- 命名空间
- 控制组
- 联合文件系统
- 容器格式
- 网络
- Etcd 项目
- 简介
- 安装
- 集群
- 使用 etcdctl
- CoreOS 项目
- 简介
- 工具
- Kubernetes 项目
- 简介
- 快速上手
- 基本概念
- kubectl 使用
- 架构设计
- 容器与云计算
- 简介
- 亚马逊云
- 腾讯云
- 阿里云
- 小结
- 实战案例-操作系统
- Busybox
- Alpine
- Debian Ubuntu
- CentOS Fedora
- 本章小结
- 实战案例-CI/CD
- GitHub Actions
- Drone
- 部署 Drone
- Travis CI
- Docker 开源项目
- LinuxKit
- 附录
- 附录一:常见问题总结
- 附录二:热门镜像介绍
- Ubuntu
- CentOS
- Nginx
- PHP
- Node.js
- MySQL
- WordPress
- MongoDB
- Redis
- 附录三:Docker 命令查询
- 附录四:Dockerfile 最佳实践
- 附录五:如何调试 Docker
- 附录六:资源链接
- 归档
- Mesos - 优秀的集群资源调度平台
- Mesos 简介
- 安装与使用
- 原理与架构
- Mesos 配置项解析
- 日志与监控
- 常见应用框架
- 本章小结
- Docker Machine
- 安装
- 使用
- Docker Swarm
原理与架构
原理与架构
首先,再次需要强调 Mesos 自身只是一个资源调度框架,并非一整套完整的应用管理平台,所以只有 Mesos 自己是不能干活的。但是基于 Mesos,可以比较容易地为各种应用管理框架或者中间件平台(作为 Mesos 的应用)提供分布式运行能力;同时多个框架也可以同时运行在一个 Mesos 集群中,提高整体的资源使用效率。
Mesos 对自己定位范围的划分,使得它要完成的任务很明确,其它任务框架也可以很容易的与它进行整合。
架构
下面这张基本架构图来自 Mesos 官方。
可以看出,Mesos 采用了经典的主-从(master-slave)架构,其中主节点(管理节点)可以使用 zookeeper 来做 HA。
Mesos master 服务将运行在主节点上,Mesos slave 服务则需要运行在各个计算任务节点上。
负责完成具体任务的应用框架们,跟 Mesos master 进行交互,来申请资源。
基本单元
Mesos 中有三个基本的组件:管理服务(master)、任务服务(slave)以及应用框架(framework)。
管理服务 - master
跟大部分分布式系统中类似,主节点起到管理作用,将看到全局的信息,负责不同应用框架之间的资源调度和逻辑控制。应用框架需要注册到管理服务上才能被使用。
用户和应用需要通过主节点提供的 API 来获取集群状态和操作集群资源。
任务服务 - slave
负责汇报本从节点上的资源状态(空闲资源、运行状态等等)给主节点,并负责隔离本地资源来执行主节点分配的具体任务。
隔离机制目前包括各种容器机制,包括 LXC、Docker 等。
应用框架 - framework
应用框架是实际干活的,包括两个主要组件:
- 调度器(scheduler):注册到主节点,等待分配资源;
- 执行器(executor):在从节点上执行框架指定的任务(框架也可以使用 Mesos 自带的执行器,包括 shell 脚本执行器和 Docker 执行器)。
应用框架可以分两种:一种是对资源的需求是会扩展的(比如 Hadoop、Spark 等),申请后还可能调整;一种是对资源需求大小是固定的(MPI 等),一次申请即可。
调度
对于一个资源调度框架来说,最核心的就是调度机制,怎么能快速高效地完成对某个应用框架资源的分配,是核心竞争力所在。最理想情况下(大部分时候都无法实现),最好是能猜到应用们的实际需求,实现最大化的资源使用率。
Mesos 为了实现尽量优化的调度,采取了两层(two-layer)的调度算法。
算法基本过程
调度的基本思路很简单,master 先全局调度一大块资源给某个 framework,framework 自己再实现内部的细粒度调度,决定哪个任务用多少资源。两层调度简化了 Mesos master 自身的调度过程,通过将复杂的细粒度调度交由 framework 实现,避免了 Mesos master 成为性能瓶颈。
调度机制支持插件机制来实现不同的策略。默认是 Dominant Resource Fairness(DRF)。
注:DRF 算法细节可以参考论文《Dominant Resource Fairness: Fair Allocation of Multiple Resource Types》。其核心思想是对不同类型资源的多个请求,计算请求的主资源类型,然后根据主资源进行公平分配。
调度过程
调度通过 offer 发送的方式进行交互。一个 offer 是一组资源,例如 <1 CPU, 2 GB Mem>
。
基本调度过程如下:
- 首先,slave 节点会周期性汇报自己可用的资源给 master;
- 某个时候,master 收到应用框架发来的资源请求,根据调度策略,计算出来一个资源 offer 给 framework;
- framework 收到 offer 后可以决定要不要,如果接受的话,返回一个描述,说明自己希望如何使用和分配这些资源来运行某些任务(可以说明只希望使用部分资源,则多出来的会被 master 收回);
- 最后,master 则根据 framework 答复的具体分配情况发送给 slave,以使用 framework 的 executor 来按照分配的资源策略执行任务。
具体给出一个例子,某从节点向主节点汇报自己有 <4 CPU, 8 GB Mem>
的空闲资源,同时,主节点看到某个应用框架请求 <3 CPU, 6 GB Mem>
,就创建一个 offer <slave#1, 4 CPU, 8 GB Mem>
把满足的资源发给应用框架。应用框架(的调度器)收到 offer 后觉得可以接受,就回复主节点,并告诉主节点希望运行两个任务:一个占用 <1 CPU, 2 GB Mem>
,一个占用 一个占用 <2 CPU, 4 GB Mem>
。主节点收到任务信息后分配任务到从节点上进行运行(实际上是应用框架的执行器来负责执行任务)。任务运行结束后资源可以被释放出来。
剩余的资源还可以继续分配给其他应用框架或任务。
应用框架在收到 offer 后,如果 offer 不满足自己的偏好(例如希望继续使用上次的 slave 节点),则可以选择拒绝 offer,等待 master 发送新的 offer 过来。另外,可以通过过滤器机制来加快资源的分配过程。
过滤器
framework 可以通过过滤器机制告诉 master 它的资源偏好,比如希望分配过来的 offer 有哪个资源,或者至少有多少资源等。
过滤器可以避免某些应用资源长期分配不到所需要的资源的情况,加速整个资源分配的交互过程。
回收机制
为了避免某些任务长期占用集群中资源,Mesos 也支持回收机制。
主节点可以定期回收计算节点上的任务所占用的资源,可以动态调整长期任务和短期任务的分布。
HA
从架构上看,最为核心的节点是 master 节点。除了使用 ZooKeeper 来解决单点失效问题之外,Mesos 的 master 节点自身还提供了很高的鲁棒性。
Mesos master 节点在重启后,可以动态通过 slave 和 framework 发来的消息重建内部状态,虽然可能导致一定的时延,但这避免了传统控制节点对数据库的依赖。
当然,为了减少 master 节点的负载过大,在集群中 slave 节点数目较多的时候,要避免把各种通知的周期配置的过短。实践中,可以通过部署多个 Mesos 集群来保持单个集群的规模不要过大。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论