返回介绍

solution / 1500-1599 / 1594.Maximum Non Negative Product in a Matrix / README

发布于 2024-06-17 01:03:16 字数 6396 浏览 0 评论 0 收藏 0

1594. 矩阵的最大非负积

English Version

题目描述

给你一个大小为 m x n 的矩阵 grid 。最初,你位于左上角 (0, 0) ,每一步,你可以在矩阵中 向右向下 移动。

在从左上角 (0, 0) 开始到右下角 (m - 1, n - 1) 结束的所有路径中,找出具有 最大非负积 的路径。路径的积是沿路径访问的单元格中所有整数的乘积。

返回 最大非负积 _ _109 + 7 取余 的结果。如果最大积为 负数 ,则返回_ _-1

注意,取余是在得到最大积之后执行的。

 

示例 1:

输入:grid = [[-1,-2,-3],[-2,-3,-3],[-3,-3,-2]]
输出:-1
解释:从 (0, 0) 到 (2, 2) 的路径中无法得到非负积,所以返回 -1 。

示例 2:

输入:grid = [[1,-2,1],[1,-2,1],[3,-4,1]]
输出:8
解释:最大非负积对应的路径如图所示 (1 * 1 * -2 * -4 * 1 = 8)

示例 3:

输入:grid = [[1,3],[0,-4]]
输出:0
解释:最大非负积对应的路径如图所示 (1 * 0 * -4 = 0)

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 15
  • -4 <= grid[i][j] <= 4

解法

方法一:动态规划

时间复杂度 $O(m\times n)$。其中 $m$ 和 $n$ 分别为矩阵的行数和列数。

class Solution:
  def maxProductPath(self, grid: List[List[int]]) -> int:
    m, n = len(grid), len(grid[0])
    mod = 10**9 + 7
    dp = [[[grid[0][0]] * 2 for _ in range(n)] for _ in range(m)]
    for i in range(1, m):
      dp[i][0] = [dp[i - 1][0][0] * grid[i][0]] * 2
    for j in range(1, n):
      dp[0][j] = [dp[0][j - 1][0] * grid[0][j]] * 2
    for i in range(1, m):
      for j in range(1, n):
        v = grid[i][j]
        if v >= 0:
          dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
          dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
        else:
          dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
          dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
    ans = dp[-1][-1][1]
    return -1 if ans < 0 else ans % mod
class Solution {
  private static final int MOD = (int) 1e9 + 7;

  public int maxProductPath(int[][] grid) {
    int m = grid.length;
    int n = grid[0].length;
    long[][][] dp = new long[m][n][2];
    dp[0][0][0] = grid[0][0];
    dp[0][0][1] = grid[0][0];
    for (int i = 1; i < m; ++i) {
      dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
      dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
    }
    for (int j = 1; j < n; ++j) {
      dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
      dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
    }
    for (int i = 1; i < m; ++i) {
      for (int j = 1; j < n; ++j) {
        int v = grid[i][j];
        if (v >= 0) {
          dp[i][j][0] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
          dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
        } else {
          dp[i][j][0] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
          dp[i][j][1] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
        }
      }
    }
    long ans = dp[m - 1][n - 1][1];
    return ans < 0 ? -1 : (int) (ans % MOD);
  }
}
using ll = long long;
const int mod = 1e9 + 7;

class Solution {
public:
  int maxProductPath(vector<vector<int>>& grid) {
    int m = grid.size();
    int n = grid[0].size();
    vector<vector<vector<ll>>> dp(m, vector<vector<ll>>(n, vector<ll>(2, grid[0][0])));
    for (int i = 1; i < m; ++i) {
      dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
      dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
    }
    for (int j = 1; j < n; ++j) {
      dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
      dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
    }
    for (int i = 1; i < m; ++i) {
      for (int j = 1; j < n; ++j) {
        int v = grid[i][j];
        if (v >= 0) {
          dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
          dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
        } else {
          dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
          dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
        }
      }
    }
    ll ans = dp[m - 1][n - 1][1];
    return ans < 0 ? -1 : (int) (ans % mod);
  }
};
func maxProductPath(grid [][]int) int {
  m, n := len(grid), len(grid[0])
  dp := make([][][]int, m)
  for i := range dp {
    dp[i] = make([][]int, n)
    for j := range dp[i] {
      dp[i][j] = make([]int, 2)
    }
  }
  dp[0][0] = []int{grid[0][0], grid[0][0]}
  for i := 1; i < m; i++ {
    dp[i][0][0] = dp[i-1][0][0] * grid[i][0]
    dp[i][0][1] = dp[i-1][0][1] * grid[i][0]
  }
  for j := 1; j < n; j++ {
    dp[0][j][0] = dp[0][j-1][0] * grid[0][j]
    dp[0][j][1] = dp[0][j-1][1] * grid[0][j]
  }
  for i := 1; i < m; i++ {
    for j := 1; j < n; j++ {
      v := grid[i][j]
      if v >= 0 {
        dp[i][j][0] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
        dp[i][j][1] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
      } else {
        dp[i][j][0] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
        dp[i][j][1] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
      }
    }
  }
  ans := dp[m-1][n-1][1]
  if ans < 0 {
    return -1
  }
  var mod int = 1e9 + 7
  return ans % mod
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文