返回介绍

solution / 0000-0099 / 0035.Search Insert Position / README_EN

发布于 2024-06-17 01:04:40 字数 4792 浏览 0 评论 0 收藏 0

35. Search Insert Position

中文文档

Description

Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You must write an algorithm with O(log n) runtime complexity.

 

Example 1:

Input: nums = [1,3,5,6], target = 5
Output: 2

Example 2:

Input: nums = [1,3,5,6], target = 2
Output: 1

Example 3:

Input: nums = [1,3,5,6], target = 7
Output: 4

 

Constraints:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums contains distinct values sorted in ascending order.
  • -104 <= target <= 104

Solutions

Solution 1: Binary Search

Since the array $nums$ is already sorted, we can use the binary search method to find the insertion position of the target value $target$.

The time complexity is $O(\log n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.

class Solution:
  def searchInsert(self, nums: List[int], target: int) -> int:
    left, right = 0, len(nums)
    while left < right:
      mid = (left + right) >> 1
      if nums[mid] >= target:
        right = mid
      else:
        left = mid + 1
    return left
class Solution {
  public int searchInsert(int[] nums, int target) {
    int left = 0, right = nums.length;
    while (left < right) {
      int mid = (left + right) >>> 1;
      if (nums[mid] >= target) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
}
class Solution {
public:
  int searchInsert(vector<int>& nums, int target) {
    int left = 0, right = nums.size();
    while (left < right) {
      int mid = left + right >> 1;
      if (nums[mid] >= target)
        right = mid;
      else
        left = mid + 1;
    }
    return left;
  }
};
func searchInsert(nums []int, target int) int {
  left, right := 0, len(nums)
  for left < right {
    mid := (left + right) >> 1
    if nums[mid] >= target {
      right = mid
    } else {
      left = mid + 1
    }
  }
  return left
}
use std::cmp::Ordering;
impl Solution {
  pub fn search_insert(nums: Vec<i32>, target: i32) -> i32 {
    let mut left = 0;
    let mut right = nums.len();
    while left < right {
      let mid = left + (right - left) / 2;
      match nums[mid].cmp(&target) {
        Ordering::Less => {
          left = mid + 1;
        }
        Ordering::Greater => {
          right = mid;
        }
        Ordering::Equal => {
          return mid as i32;
        }
      }
    }
    left as i32
  }
}
/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var searchInsert = function (nums, target) {
  let left = 0;
  let right = nums.length;
  while (left < right) {
    const mid = (left + right) >> 1;
    if (nums[mid] >= target) {
      right = mid;
    } else {
      left = mid + 1;
    }
  }
  return left;
};

Solution 2

class Solution:
  def searchInsert(self, nums: List[int], target: int) -> int:
    return bisect_left(nums, target)
class Solution {
public:
  int searchInsert(vector<int>& nums, int target) {
    return lower_bound(nums.begin(), nums.end(), target) - nums.begin();
  }
};
func searchInsert(nums []int, target int) int {
  return sort.SearchInts(nums, target)
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文