- 1.2 服务介绍
- 1.3.1 概念介绍
- 1.3.2 快速入门
- 1.3.3 申请Quota
- 1.3.4 集群环境
- 1.3.5 Fdsfuse介绍
- 1.3.6 Tensorflow中使用hdfs
- 1.4 客户端使用
- 1.4.1 安装命令行工具
- 1.4.2 使用命令行工具
- 1.4.3 使用Python SDK
- 1.4.4 使用Web控制台
- 1.5 TrainJob功能
- 1.5.1 训练任务组件和流程
- 1.5.2 上手Trainjob
- 1.5.3 使用GPU
- 1.5.4 使用FDS
- 1.5.5 使用Fuse
- 1.5.6 Trainjob高级功能
- 1.5.6.1 分布式训练
- 1.5.6.2 使用前置/后置命令
- 1.5.6.3 自动超参数调优
- 1.5.6.4 自动超参数调优Hpjob
- 1.5.6.5 自动超参数调优Hpjob
- 1.5.6.6 使用自定义镜像
- 1.5.6.7 使用TensorFlow模板应用
- 1.5.6.8 使用HDFS
- 1.5.6.9 使用HDFS FUSE
- 1.6 ModelService功能
- 1.6.1 模型服务使用流程
- 1.6.2 TensorFlow Serving介绍
- 1.6.3 使用GPU模型服务
- 1.6.4 使用多副本和负载均衡
- 1.6.5 在线服务的模型升级
- 1.6.6 模型服务监控
- 1.6.7 使用前置命令和后置命令
- 1.6.8 定制模型服务Docker镜像
- 1.6.9 使用客户端预测
- 1.6.9.1 使用通用gRPC客户端
- 1.6.9.2 使用Python客户端
- 1.6.9.3 使用Java客户端
- 1.6.9.4 使用Scala客户端
- 1.6.9.5 使用Golang客户端
- 1.6.9.6 使用C++客户端
- 1.7 DevEnv功能
- 1.7.1 开发环境使用流程
- 1.7.2 使用命令行管理开发环境
- 1.7.3 使用WEB控制台管理开发环境
- 1.7.4 高级功能
- 1.7.4.1 使用GPU开发环境
- 1.7.4.2 使用FDS FUSE存储
- 1.7.4.3 使用HDFS存储
- 1.7.4.4 使用HDFS FUSE存储
- 1.7.4.5 网络和安全
- 1.7.4.6 监控
- 1.7.4.7 定制开发环境Docker镜像
- 1.7.5 最佳实践
- 1.8 使用率监控
- 1.8.1 GPU使用率监控
- 1.9 TensorboardService功能
- 1.9.1 TensorBoard使用流程
- 1.9.2 TensorBoard介绍
- 1.10 API文档
- 1.10.1 签名规范
- 1.10.2 API文档
- 1.11 问题反馈
- 1.11.1 FAQ
- 1.11.2 技术支持
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
1.9.2 TensorBoard介绍
数据写入FDS
生成运算的graph参考TensorBoard使用文档,路径直接使用fds的路径即可。需要注意的是,与直接使用官方tensorboard不同,在SummaryWriter结束的时候,需要进行close操作,否则数据写入不完整,会有部分数据丢失。
#!/usr/bin/env python
import tensorflow as tf
import numpy as np
train_X = np.linspace(-1, 1, 101)
train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.33 + 10
X = tf.placeholder("float")
Y = tf.placeholder("float")
w = tf.Variable(0.0, name="weight")
b = tf.Variable(0.0, name="reminder")
init_op = tf.initialize_all_variables()
cost_op = tf.square(Y - tf.mul(X, w) - b)
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost_op)
with tf.Session() as sess:
sess.run(init_op)
#直接使用fds路径
writer = tf.train.SummaryWriter("fds://cloudml/test", sess.graph)
for i in range(10):
for (x, y) in zip(train_X, train_Y):
sess.run(train_op, feed_dict={X: x, Y: y})
print(sess.run(w))
print(sess.run(b))
#结尾进行close
writer.close()
读取FDS的文件
需要先安装带fds版本的tensorflow。
fds的路径访问格式为:"fds://%s:%s@%s.%s/test/summary/" % (ID, SECRET, BUCKET, ENDPOINT),如:
tensorboard --inspect --logdir=fds://AK7AUPxxxxQQK2:3tJamiK8zpgkWxxxxxxx7lvIcelQfpn@tensorflow-test.cnbj1-fds.api.xiaomi.net/galaxy-hadoop-test/input.txt
或者使用环境变量。
export XIAOMI_ACCESS_KEY_ID="AKRCxxxxxxxxxxxY7EG"
export XIAOMI_SECRET_ACCESS_KEY="w0TYaxxxxxxxxxxxxxxxxxxxxxxxxxxxtmXAeWbqMw"
tensorboard --logdir fds://cloud-ml-test.cnbj1-fds.api.xiaomi.net/demo3_tensorboard/
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论