返回介绍

solution / 0700-0799 / 0778.Swim in Rising Water / README_EN

发布于 2024-06-17 01:03:34 字数 8883 浏览 0 评论 0 收藏 0

778. Swim in Rising Water

中文文档

Description

You are given an n x n integer matrix grid where each value grid[i][j] represents the elevation at that point (i, j).

The rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distances in zero time. Of course, you must stay within the boundaries of the grid during your swim.

Return _the least time until you can reach the bottom right square _(n - 1, n - 1)_ if you start at the top left square _(0, 0).

 

Example 1:

Input: grid = [[0,2],[1,3]]
Output: 3
Explanation:
At time 0, you are in grid location (0, 0).
You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
You cannot reach point (1, 1) until time 3.
When the depth of water is 3, we can swim anywhere inside the grid.

Example 2:

Input: grid = [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
Output: 16
Explanation: The final route is shown.
We need to wait until time 16 so that (0, 0) and (4, 4) are connected.

 

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] < n2
  • Each value grid[i][j] is unique.

Solutions

Solution 1

class Solution:
  def swimInWater(self, grid: List[List[int]]) -> int:
    def find(x):
      if p[x] != x:
        p[x] = find(p[x])
      return p[x]

    n = len(grid)
    p = list(range(n * n))
    hi = [0] * (n * n)
    for i, row in enumerate(grid):
      for j, h in enumerate(row):
        hi[h] = i * n + j
    for t in range(n * n):
      i, j = hi[t] // n, hi[t] % n
      for a, b in [(0, -1), (0, 1), (1, 0), (-1, 0)]:
        x, y = i + a, j + b
        if 0 <= x < n and 0 <= y < n and grid[x][y] <= t:
          p[find(x * n + y)] = find(hi[t])
        if find(0) == find(n * n - 1):
          return t
    return -1
class Solution {
  private int[] p;

  public int swimInWater(int[][] grid) {
    int n = grid.length;
    p = new int[n * n];
    for (int i = 0; i < p.length; ++i) {
      p[i] = i;
    }
    int[] hi = new int[n * n];
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        hi[grid[i][j]] = i * n + j;
      }
    }
    int[] dirs = {-1, 0, 1, 0, -1};
    for (int t = 0; t < n * n; ++t) {
      int i = hi[t] / n;
      int j = hi[t] % n;
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k];
        int y = j + dirs[k + 1];
        if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] <= t) {
          p[find(x * n + y)] = find(i * n + j);
        }
        if (find(0) == find(n * n - 1)) {
          return t;
        }
      }
    }
    return -1;
  }

  private int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }
}
class Solution {
public:
  vector<int> p;

  int swimInWater(vector<vector<int>>& grid) {
    int n = grid.size();
    p.resize(n * n);
    for (int i = 0; i < p.size(); ++i) p[i] = i;
    vector<int> hi(n * n);
    for (int i = 0; i < n; ++i)
      for (int j = 0; j < n; ++j)
        hi[grid[i][j]] = i * n + j;
    vector<int> dirs = {-1, 0, 1, 0, -1};
    for (int t = 0; t < n * n; ++t) {
      int i = hi[t] / n, j = hi[t] % n;
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < n && y >= 0 && y < n && grid[x][y] <= t)
          p[find(x * n + y)] = find(hi[t]);
        if (find(0) == find(n * n - 1)) return t;
      }
    }
    return -1;
  }

  int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
  }
};
func swimInWater(grid [][]int) int {
  n := len(grid)
  p := make([]int, n*n)
  for i := range p {
    p[i] = i
  }
  hi := make([]int, n*n)
  for i, row := range grid {
    for j, h := range row {
      hi[h] = i*n + j
    }
  }
  var find func(x int) int
  find = func(x int) int {
    if p[x] != x {
      p[x] = find(p[x])
    }
    return p[x]
  }
  dirs := []int{-1, 0, 1, 0, -1}
  for t := 0; t < n*n; t++ {
    i, j := hi[t]/n, hi[t]%n
    for k := 0; k < 4; k++ {
      x, y := i+dirs[k], j+dirs[k+1]
      if x >= 0 && x < n && y >= 0 && y < n && grid[x][y] <= t {
        p[find(x*n+y)] = find(hi[t])
      }
      if find(0) == find(n*n-1) {
        return t
      }
    }
  }
  return -1
}
function swimInWater(grid: number[][]): number {
  const m = grid.length,
    n = grid[0].length;
  let visited = Array.from({ length: m }, () => new Array(n).fill(false));
  let ans = 0;
  let stack = [[0, 0, grid[0][0]]];
  const dir = [
    [0, 1],
    [0, -1],
    [1, 0],
    [-1, 0],
  ];

  while (stack.length) {
    let [i, j] = stack.shift();
    ans = Math.max(grid[i][j], ans);
    if (i == m - 1 && j == n - 1) break;
    for (let [dx, dy] of dir) {
      let x = i + dx,
        y = j + dy;
      if (x < m && x > -1 && y < n && y > -1 && !visited[x][y]) {
        visited[x][y] = true;
        stack.push([x, y, grid[x][y]]);
      }
    }
    stack.sort((a, b) => a[2] - b[2]);
  }
  return ans;
}
const DIR: [(i32, i32); 4] = [
  (-1, 0),
  (1, 0),
  (0, -1),
  (0, 1),
];

impl Solution {
  #[allow(dead_code)]
  pub fn swim_in_water(grid: Vec<Vec<i32>>) -> i32 {
    let n = grid.len();
    let m = grid[0].len();
    let mut ret_time = 0;
    let mut disjoint_set: Vec<usize> = vec![0; n * m];

    // Initialize the disjoint set
    for i in 0..n * m {
      disjoint_set[i] = i;
    }

    loop {
      if Self::check_and_union(&grid, &mut disjoint_set, ret_time) {
        break;
      }
      // Otherwise, keep checking
      ret_time += 1;
    }

    ret_time
  }

  #[allow(dead_code)]
  fn check_and_union(grid: &Vec<Vec<i32>>, d_set: &mut Vec<usize>, cur_time: i32) -> bool {
    let n = grid.len();
    let m = grid[0].len();

    for i in 0..n {
      for j in 0..m {
        if grid[i][j] != cur_time {
          continue;
        }
        // Otherwise, let's union the square with its neighbors
        for (dx, dy) in DIR {
          let x = dx + (i as i32);
          let y = dy + (j as i32);
          if
            Self::check_bounds(x, y, n as i32, m as i32) &&
            grid[x as usize][y as usize] <= cur_time
          {
            Self::union(i * m + j, (x as usize) * m + (y as usize), d_set);
          }
        }
      }
    }

    Self::find(0, d_set) == Self::find(n * m - 1, d_set)
  }

  #[allow(dead_code)]
  fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
    if d_set[x] != x {
      d_set[x] = Self::find(d_set[x], d_set);
    }
    d_set[x]
  }

  #[allow(dead_code)]
  fn union(x: usize, y: usize, d_set: &mut Vec<usize>) {
    let p_x = Self::find(x, d_set);
    let p_y = Self::find(y, d_set);
    d_set[p_x] = p_y;
  }

  #[allow(dead_code)]
  fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
    i >= 0 && i < n && j >= 0 && j < m
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文