返回介绍

solution / 0000-0099 / 0087.Scramble String / README_EN

发布于 2024-06-17 01:04:39 字数 14168 浏览 0 评论 0 收藏 0

87. Scramble String

中文文档

Description

We can scramble a string s to get a string t using the following algorithm:

  1. If the length of the string is 1, stop.
  2. If the length of the string is > 1, do the following:
    • Split the string into two non-empty substrings at a random index, i.e., if the string is s, divide it to x and y where s = x + y.
    • Randomly decide to swap the two substrings or to keep them in the same order. i.e., after this step, s may become s = x + y or s = y + x.
    • Apply step 1 recursively on each of the two substrings x and y.

Given two strings s1 and s2 of the same length, return true if s2 is a scrambled string of s1, otherwise, return false.

 

Example 1:

Input: s1 = "great", s2 = "rgeat"
Output: true
Explanation: One possible scenario applied on s1 is:
"great" --> "gr/eat" // divide at random index.
"gr/eat" --> "gr/eat" // random decision is not to swap the two substrings and keep them in order.
"gr/eat" --> "g/r / e/at" // apply the same algorithm recursively on both substrings. divide at random index each of them.
"g/r / e/at" --> "r/g / e/at" // random decision was to swap the first substring and to keep the second substring in the same order.
"r/g / e/at" --> "r/g / e/ a/t" // again apply the algorithm recursively, divide "at" to "a/t".
"r/g / e/ a/t" --> "r/g / e/ a/t" // random decision is to keep both substrings in the same order.
The algorithm stops now, and the result string is "rgeat" which is s2.
As one possible scenario led s1 to be scrambled to s2, we return true.

Example 2:

Input: s1 = "abcde", s2 = "caebd"
Output: false

Example 3:

Input: s1 = "a", s2 = "a"
Output: true

 

Constraints:

  • s1.length == s2.length
  • 1 <= s1.length <= 30
  • s1 and s2 consist of lowercase English letters.

Solutions

Solution 1: Memorized Search

We design a function $dfs(i, j, k)$, which means whether the substring starting from $i$ with length $k$ in $s_1$ can be converted into the substring starting from $j$ with length $k$ in $s_2$. If it can be converted, return true, otherwise return false. The answer is $dfs(0, 0, n)$, where $n$ is the length of the string.

The calculation method of function $dfs(i, j, k)$ is as follows:

  • If $k=1$, then we only need to judge whether $s_1[i]$ and $s_2[j]$ are equal. If they are equal, return true, otherwise return false;
  • If $k \gt 1$, we enumerate the length of the split part $h$, then there are two cases: if the two substrings of the split are not swapped, then it is $dfs(i, j, h) \land dfs(i+h, j+h, k-h)$; if the two substrings of the split are swapped, then it is $dfs(i, j+k-h, h) \land dfs(i+h, j, k-h)$. If one of the two cases is true, then $dfs(i, j, k)$ is true, return true, otherwise return false.

Finally, we return $dfs(0, 0, n)$.

In order to avoid repeated calculation, we can use memory search.

The time complexity is $O(n^4)$, and the space complexity is $O(n^3)$. Where $n$ is the length of the string.

class Solution:
  def isScramble(self, s1: str, s2: str) -> bool:
    @cache
    def dfs(i: int, j: int, k: int) -> bool:
      if k == 1:
        return s1[i] == s2[j]
      for h in range(1, k):
        if dfs(i, j, h) and dfs(i + h, j + h, k - h):
          return True
        if dfs(i + h, j, k - h) and dfs(i, j + k - h, h):
          return True
      return False

    return dfs(0, 0, len(s1))
class Solution {
  private Boolean[][][] f;
  private String s1;
  private String s2;

  public boolean isScramble(String s1, String s2) {
    int n = s1.length();
    this.s1 = s1;
    this.s2 = s2;
    f = new Boolean[n][n][n + 1];
    return dfs(0, 0, n);
  }

  private boolean dfs(int i, int j, int k) {
    if (f[i][j][k] != null) {
      return f[i][j][k];
    }
    if (k == 1) {
      return s1.charAt(i) == s2.charAt(j);
    }
    for (int h = 1; h < k; ++h) {
      if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
        return f[i][j][k] = true;
      }
      if (dfs(i + h, j, k - h) && dfs(i, j + k - h, h)) {
        return f[i][j][k] = true;
      }
    }
    return f[i][j][k] = false;
  }
}
class Solution {
public:
  bool isScramble(string s1, string s2) {
    int n = s1.size();
    int f[n][n][n + 1];
    memset(f, -1, sizeof(f));
    function<bool(int, int, int)> dfs = [&](int i, int j, int k) -> int {
      if (f[i][j][k] != -1) {
        return f[i][j][k] == 1;
      }
      if (k == 1) {
        return s1[i] == s2[j];
      }
      for (int h = 1; h < k; ++h) {
        if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
          return f[i][j][k] = true;
        }
        if (dfs(i + h, j, k - h) && dfs(i, j + k - h, h)) {
          return f[i][j][k] = true;
        }
      }
      return f[i][j][k] = false;
    };
    return dfs(0, 0, n);
  }
};
func isScramble(s1 string, s2 string) bool {
  n := len(s1)
  f := make([][][]int, n)
  for i := range f {
    f[i] = make([][]int, n)
    for j := range f[i] {
      f[i][j] = make([]int, n+1)
    }
  }
  var dfs func(i, j, k int) bool
  dfs = func(i, j, k int) bool {
    if k == 1 {
      return s1[i] == s2[j]
    }
    if f[i][j][k] != 0 {
      return f[i][j][k] == 1
    }
    f[i][j][k] = 2
    for h := 1; h < k; h++ {
      if (dfs(i, j, h) && dfs(i+h, j+h, k-h)) || (dfs(i+h, j, k-h) && dfs(i, j+k-h, h)) {
        f[i][j][k] = 1
        return true
      }
    }
    return false
  }
  return dfs(0, 0, n)
}
function isScramble(s1: string, s2: string): boolean {
  const n = s1.length;
  const f = new Array(n)
    .fill(0)
    .map(() => new Array(n).fill(0).map(() => new Array(n + 1).fill(-1)));
  const dfs = (i: number, j: number, k: number): boolean => {
    if (f[i][j][k] !== -1) {
      return f[i][j][k] === 1;
    }
    if (k === 1) {
      return s1[i] === s2[j];
    }
    for (let h = 1; h < k; ++h) {
      if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
        return Boolean((f[i][j][k] = 1));
      }
      if (dfs(i + h, j, k - h) && dfs(i, j + k - h, h)) {
        return Boolean((f[i][j][k] = 1));
      }
    }
    return Boolean((f[i][j][k] = 0));
  };
  return dfs(0, 0, n);
}
public class Solution {
  private string s1;
  private string s2;
  private int[,,] f;

  public bool IsScramble(string s1, string s2) {
    int n = s1.Length;
    this.s1 = s1;
    this.s2 = s2;
    f = new int[n, n, n + 1];
    return dfs(0, 0, n);
  }

  private bool dfs(int i, int j, int k) {
    if (f[i, j, k] != 0) {
      return f[i, j, k] == 1;
    }
    if (k == 1) {
      return s1[i] == s2[j];
    }
    for (int h = 1; h < k; ++h) {
      if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
        f[i, j, k] = 1;
        return true;
      }
      if (dfs(i, j + k - h, h) && dfs(i + h, j, k - h)) {
        f[i, j, k] = 1;
        return true;
      }
    }
    f[i, j, k] = -1;
    return false;
  }
}

Solution 2: Dynamic Programming (Interval DP)

We define $f[i][j][k]$ as whether the substring of length $k$ starting from $i$ of string $s_1$ can be transformed into the substring of length $k$ starting from $j$ of string $s_2$. Then the answer is $f[0][0][n]$, where $n$ is the length of the string.

For substring of length $1$, if $s_1[i] = s_2[j]$, then $f[i][j][1] = true$, otherwise $f[i][j][1] = false$.

Next, we enumerate the length $k$ of the substring from small to large, and enumerate $i$ from $0$, and enumerate $j$ from $0$. If $f[i][j][h] \land f[i + h][j + h][k - h]$ or $f[i][j + k - h][h] \land f[i + h][j][k - h]$ is true, then $f[i][j][k]$ is also true.

Finally, we return $f[0][0][n]$.

The time complexity is $O(n^4)$, and the space complexity is $O(n^3)$. Where $n$ is the length of the string.

class Solution:
  def isScramble(self, s1: str, s2: str) -> bool:
    n = len(s1)
    f = [[[False] * (n + 1) for _ in range(n)] for _ in range(n)]
    for i in range(n):
      for j in range(n):
        f[i][j][1] = s1[i] == s2[j]
    for k in range(2, n + 1):
      for i in range(n - k + 1):
        for j in range(n - k + 1):
          for h in range(1, k):
            if f[i][j][h] and f[i + h][j + h][k - h]:
              f[i][j][k] = True
              break
            if f[i + h][j][k - h] and f[i][j + k - h][h]:
              f[i][j][k] = True
              break
    return f[0][0][n]
class Solution {
  public boolean isScramble(String s1, String s2) {
    int n = s1.length();
    boolean[][][] f = new boolean[n][n][n + 1];
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        f[i][j][1] = s1.charAt(i) == s2.charAt(j);
      }
    }
    for (int k = 2; k <= n; ++k) {
      for (int i = 0; i <= n - k; ++i) {
        for (int j = 0; j <= n - k; ++j) {
          for (int h = 1; h < k; ++h) {
            if (f[i][j][h] && f[i + h][j + h][k - h]) {
              f[i][j][k] = true;
              break;
            }
            if (f[i + h][j][k - h] && f[i][j + k - h][h]) {
              f[i][j][k] = true;
              break;
            }
          }
        }
      }
    }
    return f[0][0][n];
  }
}
class Solution {
public:
  bool isScramble(string s1, string s2) {
    int n = s1.length();
    bool f[n][n][n + 1];
    memset(f, false, sizeof(f));
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        f[i][j][1] = s1[i] == s2[j];
      }
    }
    for (int k = 2; k <= n; ++k) {
      for (int i = 0; i <= n - k; ++i) {
        for (int j = 0; j <= n - k; ++j) {
          for (int h = 1; h < k; ++h) {
            if () {
              f[i][j][k] = true;
              break;
            }
            if (f[i + h][j][k - h] && f[i][j + k - h][h]) {
              f[i][j][k] = true;
              break;
            }
          }
        }
      }
    }
    return f[0][0][n];
  }
};
func isScramble(s1 string, s2 string) bool {
  n := len(s1)
  f := make([][][]bool, n)
  for i := range f {
    f[i] = make([][]bool, n)
    for j := 0; j < n; j++ {
      f[i][j] = make([]bool, n+1)
      f[i][j][1] = s1[i] == s2[j]
    }
  }
  for k := 2; k <= n; k++ {
    for i := 0; i <= n-k; i++ {
      for j := 0; j <= n-k; j++ {
        for h := 1; h < k; h++ {
          if (f[i][j][h] && f[i+h][j+h][k-h]) || (f[i+h][j][k-h] && f[i][j+k-h][h]) {
            f[i][j][k] = true
            break
          }
        }
      }
    }
  }
  return f[0][0][n]
}
function isScramble(s1: string, s2: string): boolean {
  const n = s1.length;
  const f = new Array(n)
    .fill(0)
    .map(() => new Array(n).fill(0).map(() => new Array(n + 1).fill(false)));
  for (let i = 0; i < n; ++i) {
    for (let j = 0; j < n; ++j) {
      f[i][j][1] = s1[i] === s2[j];
    }
  }
  for (let k = 2; k <= n; ++k) {
    for (let i = 0; i <= n - k; ++i) {
      for (let j = 0; j <= n - k; ++j) {
        for (let h = 1; h < k; ++h) {
          if (f[i][j][h] && f[i + h][j + h][k - h]) {
            f[i][j][k] = true;
            break;
          }
          if (f[i + h][j][k - h] && f[i][j + k - h][h]) {
            f[i][j][k] = true;
            break;
          }
        }
      }
    }
  }
  return f[0][0][n];
}
public class Solution {
  public bool IsScramble(string s1, string s2) {
    int n = s1.Length;
    bool[,,] f = new bool[n, n, n + 1];
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++ j) {
        f[i, j, 1] = s1[i] == s2[j];
      }
    }
    for (int k = 2; k <= n; ++k) {
      for (int i = 0; i <= n - k; ++i) {
        for (int j = 0; j <= n - k; ++j) {
          for (int h = 1; h < k; ++h) {
            if (f[i, j, h] && f[i + h, j + h, k - h]) {
              f[i, j, k] = true;
              break;
            }
            if (f[i, j + k - h, h] && f[i + h, j, k - h]) {
              f[i, j, k] = true;
              break;
            }
          }
        }
      }
    }
    return f[0, 0, n];
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文