第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
技术分析入门 【2】 —— 大家抢筹码(06年至12年版)— 更新版
从社区李大大以前的帖子,稍作修改,适合现在的uqer版本,感谢李大大的无私分享!
原帖地址:
https://uqer.io/community/share/5541d8a4f9f06c1c3d687fef
在本篇中,我们将使用流通股份的集中程度作为指标,为大家开发如何机智的抢筹码策略!
股市里面总是有这样的一种说法: 大股东总是会快小散一步,悄悄地进村,放枪的不要。大股东会在建仓期吸收世面上的廉价筹码,然后放出利好,逢高出货。所以大股东的建仓期,正是小散们入场分汤的好时机!
1. 数据准备
好了,说了这些原理,到底灵不灵呢?来,一试便知!这里我们首先要定义什么叫大股东呢?这里我们借助中诚信的数据,获取前十大流通股东的持股比例:
数据API: CCXE.EquMainshFCCXEGet
获取财报中十大流通股股东的持股比例(本API需要在数据商城购买)
下面的语句查询600000.XSHG
浦发银行在2014年9月30日到2014年12月31日的十大流通股股东持股情况:
import datetime as dt
from CAL.PyCAL import *
data = DataAPI.CCXE.EquMainshFCCXEGet('600000.XSHG', endDateStart='20140930', endDateEnd='20141231')
data.head()
secID | ticker | exchangeCD | secShortName | secShortNameEn | endDate | shNum | shRank | shName | holdVol | holdPct | shareCharType | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 1 | 1 | 上海国际集团有限公司 | 3157513917 | 16.93 | 101 |
1 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 2 | 2 | 上海国际信托有限公司 | 975923794 | 5.23 | 101 |
2 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 3 | 3 | 上海国鑫投资发展有限公司 | 377101999 | 2.02 | 101 |
3 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 4 | 4 | 百联集团有限公司 | 190083517 | 1.02 | 101 |
4 | 600000.XSHG | 600000 | XSHG | 浦发银行 | NaN | 2014-12-31 00:00:00 | 5 | 5 | 雅戈尔集团股份有限公司 | 162000000 | 0.87 | 101 |
我们按照报表日进行合并,并计算前十大流通股股东持股总比例:
data.groupby('endDate').sum()
可以看到,2014年年报中流通股集中度是下降的,相对于上一个季报,持股总比例从29.76%降到了29.25%。看来他的大股东没啥动静,小散们先按兵不动!
2. 策略思路
有一句俗话:不要在一棵树上吊死!小散们可以“海选PK”,择优录取!我们以上证50成分股为例,挑选出满足以下条件的股票:
- 2015年一季度季报中10大流通股股东持股比例相对于去年年报上升10%
这就是我们认定的大股东吸筹码的标志:
from quartz.api import set_universe
import datetime as dt
universe = set_universe('SH50')
for stock in universe:
try:
data = DataAPI.CCXE.EquMainshFCCXEGet(stock, endDateStart='20141231', endDateEnd='20150331')
except:
continue
res = data.groupby('endDate').sum()[-2:]
if len(res.index) == 2 and res.index[1] == '2015-03-31 00:00:00':
chg = res['holdPct'].values[1] / res['holdPct'].values[0] - 1.0
if chg > 0.1:
print '%s: %.4f' % (stock, chg)
选出来有三只股票满足:601169.XSHG
, 600887.XSHG
, 600703.XSHG
下面的股价走势图来看,这样的股票总体还是上升的。但是按照这样投钱真的靠谱吗?
import pandas as pd
stock1 = DataAPI.MktEqudAdjGet(secID=['601169.XSHG'], beginDate='20150331', endDate='20150429', field = ['closePrice', 'tradeDate'])
stock2 = DataAPI.MktEqudAdjGet(secID=['600887.XSHG'], beginDate='20150331', endDate='20150429', field = ['closePrice', 'tradeDate'])
stock3 = DataAPI.MktEqudAdjGet(secID=['600703.XSHG'], beginDate='20150331', endDate='20150429', field = ['closePrice', 'tradeDate'])
import seaborn as sns
sns.set_style('white')
total = pd.DataFrame({'601169.XSHG':stock1.closePrice.values, '600887.XSHG':stock2.closePrice.values, '600703.XSHG':stock3.closePrice.values})
total.index = stock1.tradeDate.apply(lambda x: dt.datetime.strptime(x, '%Y-%m-%d'))
total.plot(subplots=True, figsize=(12,8))
array([<matplotlib.axes.AxesSubplot object at 0x5543d10>,
<matplotlib.axes.AxesSubplot object at 0x5572850>,
<matplotlib.axes.AxesSubplot object at 0x56a62d0>], dtype=object)
3. 完整策略
我们来吧上面的想法系统化,来看这个策略效率:
- 投资域 :上证50成分股
- 业绩基准 :上证50指数
- 调仓频率 :3个月
- 调仓日期 :每年的2月28日,5月31日,8月30日,11月30日,遇到节假日的话向后顺延
- 开仓信号 :十大流通股股东持股比例集中度上升10%
- 清仓信号 :每个调仓日前一个工作日,清空当前仓位
- 买入方式 :等比例买入
- 回测周期 :2006年1月1日至2015年4月28日
这里的调仓日期的设置,是满足每期报表结束日后的两个月,这样我们有比较大的把握,可以确实拿到当前的报表数据。
import datetime as dt
start = '2006-01-01' # 回测起始时间
end = '2012-12-31' # 回测结束时间
benchmark = 'SH50' # 策略参考标准
universe = set_universe('SH50') # 证券池,支持股票和基金
capital_base = 100000 # 起始资金
longest_history = 1 # handle_data 函数中可以使用的历史数据最长窗口长度
refresh_rate = 1 # 调仓频率,即每 refresh_rate 个交易日执行一次 handle_data() 函数
def initialize(account): # 初始化虚拟账户状态
account.reportingPair = [('0930', '1231'), ('1231', '0331'), ('0331', '0630'), ('0630', '0930')]
def handle_data(account): # 每个交易日的买入卖出指令
hist = account.get_history(longest_history)
today = account.current_date
year = today.year
rebalance_dates = [dt.datetime(year, 2, 28), dt.datetime(year, 5,31), dt.datetime(year, 8, 30), dt.datetime(year, 11,30)]
cal = Calendar('China.SSE')
rebalance_dates = [cal.adjustDate(d, BizDayConvention.Following) for d in rebalance_dates]
rebalanceFlag = False
period = -1
for i, d in enumerate(rebalance_dates):
# 判断是否是调仓日
if today == d.toDateTime():
rebalanceFlag = True
period = i
break
# 调仓日前一个交易日,清空所有的仓位
elif today == cal.advanceDate(d, '-1B').toDateTime():
for stock in account.valid_secpos:
order_to(stock,0)
if rebalanceFlag:
if period == 0:
year -= 1
# 确定当前调仓日对应需要查询的报表日期
if account.reportingPair[period][0] < account.reportingPair[period][1]:
endDateStart = str(year) + account.reportingPair[period][0]
else:
endDateStart = str(year-1) + account.reportingPair[period][0]
endDateEnd = str(year) + account.reportingPair[period][1]
buyList = []
# 确定哪些股票满足“筹码”集中要求
for stock in account.universe:
try:
data = DataAPI.CCXE.EquMainshFCCXEGet(stock, endDateStart=endDateStart, endDateEnd=endDateEnd)
except:
continue
res = data.groupby('endDate').sum()[-2:]
tmp = account.reportingPair[period][1]
if len(res.index) == 2 and res.index[1] == str(year) + '-' + tmp[:2] + '-' + tmp[2:]+ ' 00:00:00':
chg = res['holdPct'].values[1] / res['holdPct'].values[0] - 1.0
if chg > 0.1:
buyList.append(stock)
print u"%s 买入 : %s" % (today, buyList)
# 等权重买入
if len(buyList) != 0:
singleCash = account.cash / len(buyList)
for stock in buyList:
approximationAmount = int(singleCash / hist[stock]['closePrice'][-1]/100.0) * 100
order(stock, approximationAmount)
2006-02-28 00:00:00 买入 : ['600050.XSHG', '600893.XSHG', '600016.XSHG', '600104.XSHG', '600010.XSHG', '600518.XSHG', '600030.XSHG', '600150.XSHG']
2006-05-31 00:00:00 买入 : ['600036.XSHG', '600111.XSHG', '600104.XSHG', '600010.XSHG', '600030.XSHG']
2006-08-30 00:00:00 买入 : ['600050.XSHG', '600893.XSHG', '600000.XSHG', '600104.XSHG', '600637.XSHG', '600837.XSHG', '600150.XSHG']
2006-11-30 00:00:00 买入 : ['600050.XSHG', '600795.XSHG', '600036.XSHG', '600000.XSHG', '600111.XSHG', '600519.XSHG', '600016.XSHG', '600518.XSHG', '601988.XSHG', '600030.XSHG']
2007-02-28 00:00:00 买入 : ['600000.XSHG', '600111.XSHG', '601006.XSHG', '600048.XSHG', '600015.XSHG', '600518.XSHG', '600887.XSHG', '600150.XSHG']
2007-05-31 00:00:00 买入 : ['600795.XSHG', '600111.XSHG', '601166.XSHG', '600104.XSHG', '600015.XSHG', '600637.XSHG', '600837.XSHG']
2007-08-30 00:00:00 买入 : ['600000.XSHG', '600519.XSHG', '601166.XSHG', '600015.XSHG', '600109.XSHG', '600887.XSHG', '601318.XSHG']
2007-11-30 00:00:00 买入 : ['600050.XSHG', '600795.XSHG', '600111.XSHG', '601006.XSHG', '600048.XSHG', '600104.XSHG', '600015.XSHG', '600837.XSHG', '601988.XSHG', '600030.XSHG']
2008-02-28 00:00:00 买入 : ['601328.XSHG', '600050.XSHG', '600795.XSHG', '600000.XSHG', '600018.XSHG', '600016.XSHG', '601006.XSHG', '600104.XSHG', '600028.XSHG', '600518.XSHG', '600837.XSHG', '601169.XSHG', '601988.XSHG', '601398.XSHG']
2008-06-02 00:00:00 买入 : ['601006.XSHG', '601166.XSHG', '600010.XSHG', '600518.XSHG', '601318.XSHG']
2008-09-01 00:00:00 买入 : ['601328.XSHG', '600050.XSHG', '601601.XSHG', '600036.XSHG', '600000.XSHG', '600519.XSHG', '600016.XSHG', '601998.XSHG', '600015.XSHG', '600637.XSHG', '600150.XSHG']
2008-12-01 00:00:00 买入 : ['601601.XSHG', '600795.XSHG', '600104.XSHG', '600837.XSHG', '601169.XSHG', '600030.XSHG']
2009-03-02 00:00:00 买入 : ['601601.XSHG', '601390.XSHG', '600104.XSHG', '600028.XSHG', '600518.XSHG', '600887.XSHG', '600837.XSHG', '601988.XSHG']
2009-06-01 00:00:00 买入 : ['600893.XSHG', '600036.XSHG', '600111.XSHG', '600585.XSHG', '600048.XSHG', '600109.XSHG', '600887.XSHG', '601988.XSHG']
2009-08-31 00:00:00 买入 : ['600050.XSHG', '600893.XSHG', '600000.XSHG', '600111.XSHG', '600519.XSHG', '600015.XSHG', '600010.XSHG', '600887.XSHG', '601766.XSHG', '601398.XSHG', '600150.XSHG']
2009-11-30 00:00:00 买入 : ['600795.XSHG', '600893.XSHG', '600016.XSHG', '601006.XSHG', '600048.XSHG', '600887.XSHG', '601988.XSHG']
2010-03-01 00:00:00 买入 : ['601601.XSHG', '600893.XSHG', '600018.XSHG', '600016.XSHG', '601668.XSHG', '600585.XSHG', '601998.XSHG', '600104.XSHG', '600028.XSHG', '601398.XSHG']
2010-05-31 00:00:00 买入 : ['600111.XSHG', '600999.XSHG', '601628.XSHG', '601318.XSHG']
2010-08-30 00:00:00 买入 : ['601328.XSHG', '600893.XSHG', '600111.XSHG', '600585.XSHG', '601998.XSHG', '601688.XSHG', '600999.XSHG', '600109.XSHG', '601989.XSHG', '600837.XSHG']
2010-11-30 00:00:00 买入 : ['600010.XSHG', '601989.XSHG', '601169.XSHG', '600150.XSHG']
2011-02-28 00:00:00 买入 : ['601601.XSHG', '601857.XSHG', '601390.XSHG', '601288.XSHG', '601668.XSHG', '601088.XSHG', '600999.XSHG', '601989.XSHG', '600837.XSHG']
2011-05-31 00:00:00 买入 : ['600893.XSHG', '601668.XSHG', '601688.XSHG', '600010.XSHG', '600109.XSHG']
2011-08-30 00:00:00 买入 : ['600010.XSHG', '600887.XSHG']
2011-11-30 00:00:00 买入 : ['601288.XSHG', '601818.XSHG', '601766.XSHG']
2012-02-28 00:00:00 买入 : ['600893.XSHG', '600015.XSHG', '600030.XSHG', '601669.XSHG', '601901.XSHG']
2012-05-31 00:00:00 买入 : ['601336.XSHG', '601989.XSHG', '601669.XSHG']
2012-08-30 00:00:00 买入 : ['601336.XSHG', '600837.XSHG', '601901.XSHG']
2012-11-30 00:00:00 买入 : ['601668.XSHG', '601901.XSHG']
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论