返回介绍

solution / 1200-1299 / 1240.Tiling a Rectangle with the Fewest Squares / README

发布于 2024-06-17 01:03:21 字数 13917 浏览 0 评论 0 收藏 0

1240. 铺瓷砖

English Version

题目描述

你是一位施工队的工长,根据设计师的要求准备为一套设计风格独特的房子进行室内装修。

房子的客厅大小为 n x m,为保持极简的风格,需要使用尽可能少的 正方形 瓷砖来铺盖地面。

假设正方形瓷砖的规格不限,边长都是整数。

请你帮设计师计算一下,最少需要用到多少块方形瓷砖?

 

示例 1:

输入:n = 2, m = 3
输出:3
解释:3 块地砖就可以铺满卧室。
   21x1 地砖
   12x2 地砖

示例 2:

输入:n = 5, m = 8
输出:5

示例 3:

输入:n = 11, m = 13
输出:6

 

提示:

  • 1 <= n <= 13
  • 1 <= m <= 13

解法

方法一:递归回溯 + 状态压缩

我们可以按位置进行递归回溯,过程中我们用一个变量 $t$ 记录当前使用的瓷砖数。

  • 如果 $j = m$,即第 $i$ 行已经被完全填充,则递归到下一行,即 $(i + 1, 0)$。
  • 如果 $i = n$,则表示所有位置都已经被填充,我们更新答案并返回。
  • 如果当前位置 $(i, j)$ 已经被填充,则直接递归到下一个位置 $(i, j + 1)$。
  • 否则,我们枚举当前位置 $(i, j)$ 可以填充的最大正方形的边长 $w$,并将当前位置 $(i, j)$ 到 $(i + w - 1, j + w - 1)$ 的位置全部填充,然后递归到下一个位置 $(i, j + w)$。在回溯时,我们需要将当前位置 $(i, j)$ 到 $(i + w - 1, j + w - 1)$ 的位置全部清空。

由于每个位置只有两种状态:填充或者未填充,因此我们可以使用一个整数来表示当前位置的状态。我们使用一个长度为 $n$ 的整数数组 $filled$,其中 $filled[i]$ 表示第 $i$ 行的状态。如果 $filled[i]$ 的第 $j$ 位为 $1$,则表示第 $i$ 行第 $j$ 列已经被填充,否则表示未填充。

class Solution:
  def tilingRectangle(self, n: int, m: int) -> int:
    def dfs(i: int, j: int, t: int):
      nonlocal ans
      if j == m:
        i += 1
        j = 0
      if i == n:
        ans = t
        return
      if filled[i] >> j & 1:
        dfs(i, j + 1, t)
      elif t + 1 < ans:
        r = c = 0
        for k in range(i, n):
          if filled[k] >> j & 1:
            break
          r += 1
        for k in range(j, m):
          if filled[i] >> k & 1:
            break
          c += 1
        mx = r if r < c else c
        for w in range(1, mx + 1):
          for k in range(w):
            filled[i + w - 1] |= 1 << (j + k)
            filled[i + k] |= 1 << (j + w - 1)
          dfs(i, j + w, t + 1)
        for x in range(i, i + mx):
          for y in range(j, j + mx):
            filled[x] ^= 1 << y

    ans = n * m
    filled = [0] * n
    dfs(0, 0, 0)
    return ans
class Solution {
  private int n;
  private int m;
  private int[] filled;
  private int ans;

  public int tilingRectangle(int n, int m) {
    this.n = n;
    this.m = m;
    ans = n * m;
    filled = new int[n];
    dfs(0, 0, 0);
    return ans;
  }

  private void dfs(int i, int j, int t) {
    if (j == m) {
      ++i;
      j = 0;
    }
    if (i == n) {
      ans = t;
      return;
    }
    if ((filled[i] >> j & 1) == 1) {
      dfs(i, j + 1, t);
    } else if (t + 1 < ans) {
      int r = 0, c = 0;
      for (int k = i; k < n; ++k) {
        if ((filled[k] >> j & 1) == 1) {
          break;
        }
        ++r;
      }
      for (int k = j; k < m; ++k) {
        if ((filled[i] >> k & 1) == 1) {
          break;
        }
        ++c;
      }
      int mx = Math.min(r, c);
      for (int w = 1; w <= mx; ++w) {
        for (int k = 0; k < w; ++k) {
          filled[i + w - 1] |= 1 << (j + k);
          filled[i + k] |= 1 << (j + w - 1);
        }
        dfs(i, j + w, t + 1);
      }
      for (int x = i; x < i + mx; ++x) {
        for (int y = j; y < j + mx; ++y) {
          filled[x] ^= 1 << y;
        }
      }
    }
  }
}
class Solution {
public:
  int tilingRectangle(int n, int m) {
    memset(filled, 0, sizeof(filled));
    this->n = n;
    this->m = m;
    ans = n * m;
    dfs(0, 0, 0);
    return ans;
  }

private:
  int filled[13];
  int n, m;
  int ans;

  void dfs(int i, int j, int t) {
    if (j == m) {
      ++i;
      j = 0;
    }
    if (i == n) {
      ans = t;
      return;
    }
    if (filled[i] >> j & 1) {
      dfs(i, j + 1, t);
    } else if (t + 1 < ans) {
      int r = 0, c = 0;
      for (int k = i; k < n; ++k) {
        if (filled[k] >> j & 1) {
          break;
        }
        ++r;
      }
      for (int k = j; k < m; ++k) {
        if (filled[i] >> k & 1) {
          break;
        }
        ++c;
      }
      int mx = min(r, c);
      for (int w = 1; w <= mx; ++w) {
        for (int k = 0; k < w; ++k) {
          filled[i + w - 1] |= 1 << (j + k);
          filled[i + k] |= 1 << (j + w - 1);
        }
        dfs(i, j + w, t + 1);
      }
      for (int x = i; x < i + mx; ++x) {
        for (int y = j; y < j + mx; ++y) {
          filled[x] ^= 1 << y;
        }
      }
    }
  }
};
func tilingRectangle(n int, m int) int {
  ans := n * m
  filled := make([]int, n)
  var dfs func(i, j, t int)
  dfs = func(i, j, t int) {
    if j == m {
      i++
      j = 0
    }
    if i == n {
      ans = t
      return
    }
    if filled[i]>>j&1 == 1 {
      dfs(i, j+1, t)
    } else if t+1 < ans {
      var r, c int
      for k := i; k < n; k++ {
        if filled[k]>>j&1 == 1 {
          break
        }
        r++
      }
      for k := j; k < m; k++ {
        if filled[i]>>k&1 == 1 {
          break
        }
        c++
      }
      mx := min(r, c)
      for w := 1; w <= mx; w++ {
        for k := 0; k < w; k++ {
          filled[i+w-1] |= 1 << (j + k)
          filled[i+k] |= 1 << (j + w - 1)
        }
        dfs(i, j+w, t+1)
      }
      for x := i; x < i+mx; x++ {
        for y := j; y < j+mx; y++ {
          filled[x] ^= 1 << y
        }
      }
    }
  }
  dfs(0, 0, 0)
  return ans
}
function tilingRectangle(n: number, m: number): number {
  let ans = n * m;
  const filled: number[] = new Array(n).fill(0);
  const dfs = (i: number, j: number, t: number) => {
    if (j === m) {
      ++i;
      j = 0;
    }
    if (i === n) {
      ans = t;
      return;
    }
    if ((filled[i] >> j) & 1) {
      dfs(i, j + 1, t);
    } else if (t + 1 < ans) {
      let [r, c] = [0, 0];
      for (let k = i; k < n; ++k) {
        if ((filled[k] >> j) & 1) {
          break;
        }
        ++r;
      }
      for (let k = j; k < m; ++k) {
        if ((filled[i] >> k) & 1) {
          break;
        }
        ++c;
      }
      const mx = Math.min(r, c);
      for (let w = 1; w <= mx; ++w) {
        for (let k = 0; k < w; ++k) {
          filled[i + w - 1] |= 1 << (j + k);
          filled[i + k] |= 1 << (j + w - 1);
        }
        dfs(i, j + w, t + 1);
      }
      for (let x = i; x < i + mx; ++x) {
        for (let y = j; y < j + mx; ++y) {
          filled[x] ^= 1 << y;
        }
      }
    }
  };
  dfs(0, 0, 0);
  return ans;
}

方法二

class Solution:
  def tilingRectangle(self, n: int, m: int) -> int:
    def dfs(i: int, j: int, t: int):
      nonlocal ans
      if j == m:
        i += 1
        j = 0
      if i == n:
        ans = t
        return
      if filled[i] >> j & 1:
        dfs(i, j + 1, t)
      elif t + 1 < ans:
        r = c = 0
        for k in range(i, n):
          if filled[k] >> j & 1:
            break
          r += 1
        for k in range(j, m):
          if filled[i] >> k & 1:
            break
          c += 1
        mx = min(r, c)
        for x in range(i, i + mx):
          for y in range(j, j + mx):
            filled[x] |= 1 << y
        for w in range(mx, 0, -1):
          dfs(i, j + w, t + 1)
          for k in range(w):
            filled[i + w - 1] ^= 1 << (j + k)
            if k < w - 1:
              filled[i + k] ^= 1 << (j + w - 1)

    ans = n * m
    filled = [0] * n
    dfs(0, 0, 0)
    return ans
class Solution {
  private int n;
  private int m;
  private int[] filled;
  private int ans;

  public int tilingRectangle(int n, int m) {
    this.n = n;
    this.m = m;
    ans = n * m;
    filled = new int[n];
    dfs(0, 0, 0);
    return ans;
  }

  private void dfs(int i, int j, int t) {
    if (j == m) {
      ++i;
      j = 0;
    }
    if (i == n) {
      ans = t;
      return;
    }
    if ((filled[i] >> j & 1) == 1) {
      dfs(i, j + 1, t);
    } else if (t + 1 < ans) {
      int r = 0, c = 0;
      for (int k = i; k < n; ++k) {
        if ((filled[k] >> j & 1) == 1) {
          break;
        }
        ++r;
      }
      for (int k = j; k < m; ++k) {
        if ((filled[i] >> k & 1) == 1) {
          break;
        }
        ++c;
      }
      int mx = Math.min(r, c);
      for (int x = i; x < i + mx; ++x) {
        for (int y = j; y < j + mx; ++y) {
          filled[x] |= 1 << y;
        }
      }
      for (int w = mx; w > 0; --w) {
        dfs(i, j + w, t + 1);
        for (int k = 0; k < w; ++k) {
          filled[i + w - 1] ^= 1 << (j + k);
          if (k < w - 1) {
            filled[i + k] ^= 1 << (j + w - 1);
          }
        }
      }
    }
  }
}
class Solution {
public:
  int tilingRectangle(int n, int m) {
    memset(filled, 0, sizeof(filled));
    this->n = n;
    this->m = m;
    ans = n * m;
    dfs(0, 0, 0);
    return ans;
  }

private:
  int filled[13];
  int n, m;
  int ans;

  void dfs(int i, int j, int t) {
    if (j == m) {
      ++i;
      j = 0;
    }
    if (i == n) {
      ans = t;
      return;
    }
    if (filled[i] >> j & 1) {
      dfs(i, j + 1, t);
    } else if (t + 1 < ans) {
      int r = 0, c = 0;
      for (int k = i; k < n; ++k) {
        if (filled[k] >> j & 1) {
          break;
        }
        ++r;
      }
      for (int k = j; k < m; ++k) {
        if (filled[i] >> k & 1) {
          break;
        }
        ++c;
      }
      int mx = min(r, c);
      for (int x = i; x < i + mx; ++x) {
        for (int y = j; y < j + mx; ++y) {
          filled[x] |= 1 << y;
        }
      }
      for (int w = mx; w; --w) {
        dfs(i, j + w, t + 1);
        for (int k = 0; k < w; ++k) {
          filled[i + w - 1] ^= 1 << (j + k);
          if (k < w - 1) {
            filled[i + k] ^= 1 << (j + w - 1);
          }
        }
      }
    }
  }
};
func tilingRectangle(n int, m int) int {
  ans := n * m
  filled := make([]int, n)
  var dfs func(i, j, t int)
  dfs = func(i, j, t int) {
    if j == m {
      i++
      j = 0
    }
    if i == n {
      ans = t
      return
    }
    if filled[i]>>j&1 == 1 {
      dfs(i, j+1, t)
    } else if t+1 < ans {
      var r, c int
      for k := i; k < n; k++ {
        if filled[k]>>j&1 == 1 {
          break
        }
        r++
      }
      for k := j; k < m; k++ {
        if filled[i]>>k&1 == 1 {
          break
        }
        c++
      }
      mx := min(r, c)
      for x := i; x < i+mx; x++ {
        for y := j; y < j+mx; y++ {
          filled[x] |= 1 << y
        }
      }
      for w := mx; w > 0; w-- {
        dfs(i, j+w, t+1)
        for k := 0; k < w; k++ {
          filled[i+w-1] ^= 1 << (j + k)
          if k < w-1 {
            filled[i+k] ^= 1 << (j + w - 1)
          }
        }
      }
    }
  }
  dfs(0, 0, 0)
  return ans
}
function tilingRectangle(n: number, m: number): number {
  let ans = n * m;
  const filled: number[] = new Array(n).fill(0);
  const dfs = (i: number, j: number, t: number) => {
    if (j === m) {
      ++i;
      j = 0;
    }
    if (i === n) {
      ans = t;
      return;
    }
    if ((filled[i] >> j) & 1) {
      dfs(i, j + 1, t);
    } else if (t + 1 < ans) {
      let [r, c] = [0, 0];
      for (let k = i; k < n; ++k) {
        if ((filled[k] >> j) & 1) {
          break;
        }
        ++r;
      }
      for (let k = j; k < m; ++k) {
        if ((filled[i] >> k) & 1) {
          break;
        }
        ++c;
      }
      const mx = Math.min(r, c);
      for (let x = i; x < i + mx; ++x) {
        for (let y = j; y < j + mx; ++y) {
          filled[x] |= 1 << y;
        }
      }
      for (let w = mx; w > 0; --w) {
        dfs(i, j + w, t + 1);
        for (let k = 0; k < w; ++k) {
          filled[i + w - 1] ^= 1 << (j + k);
          if (k < w - 1) {
            filled[i + k] ^= 1 << (j + w - 1);
          }
        }
      }
    }
  };
  dfs(0, 0, 0);
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文