返回介绍

solution / 2100-2199 / 2198.Number of Single Divisor Triplets / README_EN

发布于 2024-06-17 01:03:08 字数 6242 浏览 0 评论 0 收藏 0

2198. Number of Single Divisor Triplets

中文文档

Description

You are given a 0-indexed array of positive integers nums. A triplet of three distinct indices (i, j, k) is called a single divisor triplet of nums if nums[i] + nums[j] + nums[k] is divisible by exactly one of nums[i], nums[j], or nums[k].

Return _the number of single divisor triplets of _nums_._

 

Example 1:

Input: nums = [4,6,7,3,2]
Output: 12
Explanation:
The triplets (0, 3, 4), (0, 4, 3), (3, 0, 4), (3, 4, 0), (4, 0, 3), and (4, 3, 0) have the values of [4, 3, 2] (or a permutation of [4, 3, 2]).
4 + 3 + 2 = 9 which is only divisible by 3, so all such triplets are single divisor triplets.
The triplets (0, 2, 3), (0, 3, 2), (2, 0, 3), (2, 3, 0), (3, 0, 2), and (3, 2, 0) have the values of [4, 7, 3] (or a permutation of [4, 7, 3]).
4 + 7 + 3 = 14 which is only divisible by 7, so all such triplets are single divisor triplets.
There are 12 single divisor triplets in total.

Example 2:

Input: nums = [1,2,2]
Output: 6
Explanation:
The triplets (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), and (2, 1, 0) have the values of [1, 2, 2] (or a permutation of [1, 2, 2]).
1 + 2 + 2 = 5 which is only divisible by 1, so all such triplets are single divisor triplets.
There are 6 single divisor triplets in total.

Example 3:

Input: nums = [1,1,1]
Output: 0
Explanation:
There are no single divisor triplets.
Note that (0, 1, 2) is not a single divisor triplet because nums[0] + nums[1] + nums[2] = 3 and 3 is divisible by nums[0], nums[1], and nums[2].

 

Constraints:

  • 3 <= nums.length <= 105
  • 1 <= nums[i] <= 100

Solutions

Solution 1

class Solution:
  def singleDivisorTriplet(self, nums: List[int]) -> int:
    def check(a, b, c):
      s = a + b + c
      return sum(s % x == 0 for x in [a, b, c]) == 1

    counter = Counter(nums)
    ans = 0
    for a, cnt1 in counter.items():
      for b, cnt2 in counter.items():
        for c, cnt3 in counter.items():
          if check(a, b, c):
            if a == b:
              ans += cnt1 * (cnt1 - 1) * cnt3
            elif a == c:
              ans += cnt1 * (cnt1 - 1) * cnt2
            elif b == c:
              ans += cnt1 * cnt2 * (cnt2 - 1)
            else:
              ans += cnt1 * cnt2 * cnt3
    return ans
class Solution {
  public long singleDivisorTriplet(int[] nums) {
    int[] counter = new int[101];
    for (int x : nums) {
      ++counter[x];
    }
    long ans = 0;
    for (int i = 1; i <= 100; ++i) {
      for (int j = 1; j <= 100; ++j) {
        for (int k = 1; k <= 100; ++k) {
          int cnt1 = counter[i], cnt2 = counter[j], cnt3 = counter[k];
          int s = i + j + k;
          int cnt = 0;
          if (s % i == 0) {
            ++cnt;
          }
          if (s % j == 0) {
            ++cnt;
          }
          if (s % k == 0) {
            ++cnt;
          }
          if (cnt != 1) {
            continue;
          }
          if (i == j) {
            ans += (long) cnt1 * (cnt1 - 1) * cnt3;
          } else if (i == k) {
            ans += (long) cnt1 * (cnt1 - 1) * cnt2;
          } else if (j == k) {
            ans += (long) cnt1 * cnt2 * (cnt2 - 1);
          } else {
            ans += (long) cnt1 * cnt2 * cnt3;
          }
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  long long singleDivisorTriplet(vector<int>& nums) {
    vector<int> counter(101);
    for (int& x : nums) ++counter[x];
    long long ans = 0;
    for (int i = 1; i <= 100; ++i) {
      for (int j = 1; j <= 100; ++j) {
        for (int k = 1; k <= 100; ++k) {
          int cnt1 = counter[i], cnt2 = counter[j], cnt3 = counter[k];
          int s = i + j + k;
          int cnt = (s % i == 0) + (s % j == 0) + (s % k == 0);
          if (cnt != 1) continue;
          if (i == j)
            ans += 1ll * cnt1 * (cnt1 - 1) * cnt3;
          else if (i == k)
            ans += 1ll * cnt1 * (cnt1 - 1) * cnt2;
          else if (j == k)
            ans += 1ll * cnt1 * cnt2 * (cnt2 - 1);
          else
            ans += 1ll * cnt1 * cnt2 * cnt3;
        }
      }
    }
    return ans;
  }
};
func singleDivisorTriplet(nums []int) int64 {
  counter := make([]int, 101)
  for _, x := range nums {
    counter[x]++
  }
  var ans int64
  check := func(a, b, c int) bool {
    s := a + b + c
    cnt := 0
    if s%a == 0 {
      cnt++
    }
    if s%b == 0 {
      cnt++
    }
    if s%c == 0 {
      cnt++
    }
    return cnt == 1
  }
  for i := 1; i <= 100; i++ {
    for j := 1; j <= 100; j++ {
      for k := 1; k <= 100; k++ {
        if check(i, j, k) {
          cnt1, cnt2, cnt3 := counter[i], counter[j], counter[k]
          if i == j {
            ans += int64(cnt1 * (cnt1 - 1) * cnt3)
          } else if i == k {
            ans += int64(cnt1 * (cnt1 - 1) * cnt2)
          } else if j == k {
            ans += int64(cnt1 * cnt2 * (cnt2 - 1))
          } else {
            ans += int64(cnt1 * cnt2 * cnt3)
          }
        }
      }
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文