返回介绍

solution / 1900-1999 / 1931.Painting a Grid With Three Different Colors / README_EN

发布于 2024-06-17 01:03:12 字数 8967 浏览 0 评论 0 收藏 0

1931. Painting a Grid With Three Different Colors

中文文档

Description

You are given two integers m and n. Consider an m x n grid where each cell is initially white. You can paint each cell red, green, or blue. All cells must be painted.

Return_ the number of ways to color the grid with no two adjacent cells having the same color_. Since the answer can be very large, return it modulo 109 + 7.

 

Example 1:

Input: m = 1, n = 1
Output: 3
Explanation: The three possible colorings are shown in the image above.

Example 2:

Input: m = 1, n = 2
Output: 6
Explanation: The six possible colorings are shown in the image above.

Example 3:

Input: m = 5, n = 5
Output: 580986

 

Constraints:

  • 1 <= m <= 5
  • 1 <= n <= 1000

Solutions

Solution 1: State Compression + Dynamic Programming

We notice that the number of rows in the grid does not exceed $5$, so there are at most $3^5=243$ different color schemes in a column.

Therefore, we define $f[i][j]$ to represent the number of schemes in the first $i$ columns, where the coloring state of the $i$th column is $j$. The state $f[i][j]$ is transferred from $f[i - 1][k]$, where $k$ is the coloring state of the $i - 1$th column, and $k$ and $j$ meet the requirement of different colors being adjacent. That is:

$$ f[i][j] = \sum_{k \in \text{valid}(j)} f[i - 1][k] $$

where $\text{valid}(j)$ represents all legal predecessor states of state $j$.

The final answer is the sum of $f[n][j]$, where $j$ is any legal state.

We notice that $f[i][j]$ is only related to $f[i - 1][k]$, so we can use a rolling array to optimize the space complexity.

The time complexity is $O((m + n) \times 3^{2m})$, and the space complexity is $O(3^m)$. Here, $m$ and $n$ are the number of rows and columns of the grid, respectively.

class Solution:
  def colorTheGrid(self, m: int, n: int) -> int:
    def f1(x: int) -> bool:
      last = -1
      for _ in range(m):
        if x % 3 == last:
          return False
        last = x % 3
        x //= 3
      return True

    def f2(x: int, y: int) -> bool:
      for _ in range(m):
        if x % 3 == y % 3:
          return False
        x, y = x // 3, y // 3
      return True

    mod = 10**9 + 7
    mx = 3**m
    valid = {i for i in range(mx) if f1(i)}
    d = defaultdict(list)
    for x in valid:
      for y in valid:
        if f2(x, y):
          d[x].append(y)
    f = [int(i in valid) for i in range(mx)]
    for _ in range(n - 1):
      g = [0] * mx
      for i in valid:
        for j in d[i]:
          g[i] = (g[i] + f[j]) % mod
      f = g
    return sum(f) % mod
class Solution {
  private int m;

  public int colorTheGrid(int m, int n) {
    this.m = m;
    final int mod = (int) 1e9 + 7;
    int mx = (int) Math.pow(3, m);
    Set<Integer> valid = new HashSet<>();
    int[] f = new int[mx];
    for (int i = 0; i < mx; ++i) {
      if (f1(i)) {
        valid.add(i);
        f[i] = 1;
      }
    }
    Map<Integer, List<Integer>> d = new HashMap<>();
    for (int i : valid) {
      for (int j : valid) {
        if (f2(i, j)) {
          d.computeIfAbsent(i, k -> new ArrayList<>()).add(j);
        }
      }
    }
    for (int k = 1; k < n; ++k) {
      int[] g = new int[mx];
      for (int i : valid) {
        for (int j : d.getOrDefault(i, List.of())) {
          g[i] = (g[i] + f[j]) % mod;
        }
      }
      f = g;
    }
    int ans = 0;
    for (int x : f) {
      ans = (ans + x) % mod;
    }
    return ans;
  }

  private boolean f1(int x) {
    int last = -1;
    for (int i = 0; i < m; ++i) {
      if (x % 3 == last) {
        return false;
      }
      last = x % 3;
      x /= 3;
    }
    return true;
  }

  private boolean f2(int x, int y) {
    for (int i = 0; i < m; ++i) {
      if (x % 3 == y % 3) {
        return false;
      }
      x /= 3;
      y /= 3;
    }
    return true;
  }
}
class Solution {
public:
  int colorTheGrid(int m, int n) {
    auto f1 = [&](int x) {
      int last = -1;
      for (int i = 0; i < m; ++i) {
        if (x % 3 == last) {
          return false;
        }
        last = x % 3;
        x /= 3;
      }
      return true;
    };
    auto f2 = [&](int x, int y) {
      for (int i = 0; i < m; ++i) {
        if (x % 3 == y % 3) {
          return false;
        }
        x /= 3;
        y /= 3;
      }
      return true;
    };

    const int mod = 1e9 + 7;
    int mx = pow(3, m);
    unordered_set<int> valid;
    vector<int> f(mx);
    for (int i = 0; i < mx; ++i) {
      if (f1(i)) {
        valid.insert(i);
        f[i] = 1;
      }
    }
    unordered_map<int, vector<int>> d;
    for (int i : valid) {
      for (int j : valid) {
        if (f2(i, j)) {
          d[i].push_back(j);
        }
      }
    }
    for (int k = 1; k < n; ++k) {
      vector<int> g(mx);
      for (int i : valid) {
        for (int j : d[i]) {
          g[i] = (g[i] + f[j]) % mod;
        }
      }
      f = move(g);
    }
    int ans = 0;
    for (int x : f) {
      ans = (ans + x) % mod;
    }
    return ans;
  }
};
func colorTheGrid(m int, n int) (ans int) {
  f1 := func(x int) bool {
    last := -1
    for i := 0; i < m; i++ {
      if x%3 == last {
        return false
      }
      last = x % 3
      x /= 3
    }
    return true
  }
  f2 := func(x, y int) bool {
    for i := 0; i < m; i++ {
      if x%3 == y%3 {
        return false
      }
      x /= 3
      y /= 3
    }
    return true
  }
  mx := int(math.Pow(3, float64(m)))
  valid := map[int]bool{}
  f := make([]int, mx)
  for i := 0; i < mx; i++ {
    if f1(i) {
      valid[i] = true
      f[i] = 1
    }
  }
  d := map[int][]int{}
  for i := range valid {
    for j := range valid {
      if f2(i, j) {
        d[i] = append(d[i], j)
      }
    }
  }
  const mod int = 1e9 + 7
  for k := 1; k < n; k++ {
    g := make([]int, mx)
    for i := range valid {
      for _, j := range d[i] {
        g[i] = (g[i] + f[j]) % mod
      }
    }
    f = g
  }
  for _, x := range f {
    ans = (ans + x) % mod
  }
  return
}
function colorTheGrid(m: number, n: number): number {
  const f1 = (x: number): boolean => {
    let last = -1;
    for (let i = 0; i < m; ++i) {
      if (x % 3 === last) {
        return false;
      }
      last = x % 3;
      x = Math.floor(x / 3);
    }
    return true;
  };
  const f2 = (x: number, y: number): boolean => {
    for (let i = 0; i < m; ++i) {
      if (x % 3 === y % 3) {
        return false;
      }
      x = Math.floor(x / 3);
      y = Math.floor(y / 3);
    }
    return true;
  };
  const mx = 3 ** m;
  const valid = new Set<number>();
  const f: number[] = Array(mx).fill(0);
  for (let i = 0; i < mx; ++i) {
    if (f1(i)) {
      valid.add(i);
      f[i] = 1;
    }
  }
  const d: Map<number, number[]> = new Map();
  for (const i of valid) {
    for (const j of valid) {
      if (f2(i, j)) {
        d.set(i, (d.get(i) || []).concat(j));
      }
    }
  }
  const mod = 10 ** 9 + 7;
  for (let k = 1; k < n; ++k) {
    const g: number[] = Array(mx).fill(0);
    for (const i of valid) {
      for (const j of d.get(i) || []) {
        g[i] = (g[i] + f[j]) % mod;
      }
    }
    f.splice(0, f.length, ...g);
  }
  let ans = 0;
  for (const x of f) {
    ans = (ans + x) % mod;
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文