- 1. 介绍
- 2. 算法分析
- 3. 基本数据结构
- 4. 递归
- 5. 排序和搜索
- 6. 树和树的算法
- 7. 图和图的算法
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
5.8.选择排序
5.8.选择排序
选择排序改进了冒泡排序,每次遍历列表只做一次交换。为了做到这一点,一个选择排序在他遍历时寻找最大的值,并在完成遍历后,将其放置在正确的位置。与冒泡排序一样,在第一次遍历后,最大的项在正确的地方。 第二遍后,下一个最大的就位。遍历 n-1 次排序 n 个项,因为最终项必须在第(n-1)次遍历之后。
Figure 3 展示了整个排序过程。在每次遍历时,选择最大的剩余项,然后放置在其适当位置。第一遍放置 93,第二遍放置 77,第三遍放置 55 等。 该函数展示在 ActiveCode 1 中。
Activecode 1
def selectionSort(alist):
for fillslot in range(len(alist)-1,0,-1):
positionOfMax=0
for location in range(1,fillslot+1):
if alist[location]>alist[positionOfMax]:
positionOfMax = location
temp = alist[fillslot]
alist[fillslot] = alist[positionOfMax]
alist[positionOfMax] = temp
alist = [54,26,93,17,77,31,44,55,20]
selectionSort(alist)
print(alist)
你可能会看到选择排序与冒泡排序有相同数量的比较,因此也是 O(n2)。 然而,由于交换数量的减少,选择排序通常在基准研究中执行得更快。 事实上,对于我们的列表,冒泡排序有 20 次交换,而选择排序只有 8 次。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论