返回介绍

solution / 0100-0199 / 0120.Triangle / README_EN

发布于 2024-06-17 01:04:04 字数 7340 浏览 0 评论 0 收藏 0

120. Triangle

中文文档

Description

Given a triangle array, return _the minimum path sum from top to bottom_.

For each step, you may move to an adjacent number of the row below. More formally, if you are on index i on the current row, you may move to either index i or index i + 1 on the next row.

 

Example 1:

Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
Output: 11
Explanation: The triangle looks like:
   2
  3 4
 6 5 7
4 1 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).

Example 2:

Input: triangle = [[-10]]
Output: -10

 

Constraints:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -104 <= triangle[i][j] <= 104

 

Follow up: Could you do this using only O(n) extra space, where n is the total number of rows in the triangle?

Solutions

Solution 1: Dynamic Programming

We define $f[i][j]$ as the minimum path sum from the bottom of the triangle to the position $(i, j)$. Here, the position $(i, j)$ refers to the position in the $i$th row and $j$th column of the triangle (both starting from $0$). Then we have the following state transition equation:

$$ f[i][j] = \min(f[i + 1][j], f[i + 1][j + 1]) + triangle[i][j] $$

The answer is $f[0][0]$.

We notice that the state $f[i][j]$ is only related to the states $f[i + 1][j]$ and $f[i + 1][j + 1]$, so we can use a one-dimensional array instead of a two-dimensional array, reducing the space complexity from $O(n^2)$ to $O(n)$.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the number of rows in the triangle.

Furthermore, we can directly reuse the triangle as the f array, so there is no need to create an additional f array, reducing the space complexity to $O(1)$.

class Solution:
  def minimumTotal(self, triangle: List[List[int]]) -> int:
    n = len(triangle)
    f = [[0] * (n + 1) for _ in range(n + 1)]
    for i in range(n - 1, -1, -1):
      for j in range(i + 1):
        f[i][j] = min(f[i + 1][j], f[i + 1][j + 1]) + triangle[i][j]
    return f[0][0]
class Solution {
  public int minimumTotal(List<List<Integer>> triangle) {
    int n = triangle.size();
    int[] f = new int[n + 1];
    for (int i = n - 1; i >= 0; --i) {
      for (int j = 0; j <= i; ++j) {
        f[j] = Math.min(f[j], f[j + 1]) + triangle.get(i).get(j);
      }
    }
    return f[0];
  }
}
class Solution {
public:
  int minimumTotal(vector<vector<int>>& triangle) {
    int n = triangle.size();
    int f[n + 1];
    memset(f, 0, sizeof(f));
    for (int i = n - 1; ~i; --i) {
      for (int j = 0; j <= i; ++j) {
        f[j] = min(f[j], f[j + 1]) + triangle[i][j];
      }
    }
    return f[0];
  }
};
func minimumTotal(triangle [][]int) int {
  n := len(triangle)
  f := make([]int, n+1)
  for i := n - 1; i >= 0; i-- {
    for j := 0; j <= i; j++ {
      f[j] = min(f[j], f[j+1]) + triangle[i][j]
    }
  }
  return f[0]
}
function minimumTotal(triangle: number[][]): number {
  const n = triangle.length;
  const f: number[] = Array(n + 1).fill(0);
  for (let i = n - 1; ~i; --i) {
    for (let j = 0; j <= i; ++j) {
      f[j] = Math.min(f[j], f[j + 1]) + triangle[i][j];
    }
  }
  return f[0];
}
impl Solution {
  pub fn minimum_total(triangle: Vec<Vec<i32>>) -> i32 {
    let n = triangle.len();
    let mut f = vec![0; n + 1];
    for i in (0..n).rev() {
      for j in 0..=i {
        f[j] = f[j].min(f[j + 1]) + triangle[i][j];
      }
    }
    f[0]
  }
}

Solution 2

class Solution:
  def minimumTotal(self, triangle: List[List[int]]) -> int:
    n = len(triangle)
    f = [0] * (n + 1)
    for i in range(n - 1, -1, -1):
      for j in range(i + 1):
        f[j] = min(f[j], f[j + 1]) + triangle[i][j]
    return f[0]
class Solution {
  public int minimumTotal(List<List<Integer>> triangle) {
    for (int i = triangle.size() - 2; i >= 0; --i) {
      for (int j = 0; j <= i; ++j) {
        int x = triangle.get(i).get(j);
        int y = Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1));
        triangle.get(i).set(j, x + y);
      }
    }
    return triangle.get(0).get(0);
  }
}
class Solution {
public:
  int minimumTotal(vector<vector<int>>& triangle) {
    for (int i = triangle.size() - 2; ~i; --i) {
      for (int j = 0; j <= i; ++j) {
        triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]);
      }
    }
    return triangle[0][0];
  }
};
func minimumTotal(triangle [][]int) int {
  for i := len(triangle) - 2; i >= 0; i-- {
    for j := 0; j <= i; j++ {
      triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1])
    }
  }
  return triangle[0][0]
}
function minimumTotal(triangle: number[][]): number {
  for (let i = triangle.length - 2; ~i; --i) {
    for (let j = 0; j <= i; ++j) {
      triangle[i][j] += Math.min(triangle[i + 1][j], triangle[i + 1][j + 1]);
    }
  }
  return triangle[0][0];
}
impl Solution {
  pub fn minimum_total(triangle: Vec<Vec<i32>>) -> i32 {
    let mut triangle = triangle;
    for i in (0..triangle.len() - 1).rev() {
      for j in 0..=i {
        triangle[i][j] += triangle[i + 1][j].min(triangle[i + 1][j + 1]);
      }
    }
    triangle[0][0]
  }
}

Solution 3

class Solution:
  def minimumTotal(self, triangle: List[List[int]]) -> int:
    n = len(triangle)
    for i in range(n - 2, -1, -1):
      for j in range(i + 1):
        triangle[i][j] = (
          min(triangle[i + 1][j], triangle[i + 1][j + 1]) + triangle[i][j]
        )
    return triangle[0][0]

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文