返回介绍

solution / 1000-1099 / 1066.Campus Bikes II / README_EN

发布于 2024-06-17 01:03:31 字数 6345 浏览 0 评论 0 收藏 0

1066. Campus Bikes II

中文文档

Description

On a campus represented as a 2D grid, there are n workers and m bikes, with n <= m. Each worker and bike is a 2D coordinate on this grid.

We assign one unique bike to each worker so that the sum of the Manhattan distances between each worker and their assigned bike is minimized.

Return the minimum possible sum of Manhattan distances between each worker and their assigned bike.

The Manhattan distance between two points p1 and p2 is Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|.

 

Example 1:

Input: workers = [[0,0],[2,1]], bikes = [[1,2],[3,3]]
Output: 6
Explanation: 
We assign bike 0 to worker 0, bike 1 to worker 1. The Manhattan distance of both assignments is 3, so the output is 6.

Example 2:

Input: workers = [[0,0],[1,1],[2,0]], bikes = [[1,0],[2,2],[2,1]]
Output: 4
Explanation: 
We first assign bike 0 to worker 0, then assign bike 1 to worker 1 or worker 2, bike 2 to worker 2 or worker 1. Both assignments lead to sum of the Manhattan distances as 4.

Example 3:

Input: workers = [[0,0],[1,0],[2,0],[3,0],[4,0]], bikes = [[0,999],[1,999],[2,999],[3,999],[4,999]]
Output: 4995

 

Constraints:

  • n == workers.length
  • m == bikes.length
  • 1 <= n <= m <= 10
  • workers[i].length == 2
  • bikes[i].length == 2
  • 0 <= workers[i][0], workers[i][1], bikes[i][0], bikes[i][1] < 1000
  • All the workers and the bikes locations are unique.

Solutions

Solution 1

class Solution:
  def assignBikes(self, workers: List[List[int]], bikes: List[List[int]]) -> int:
    n, m = len(workers), len(bikes)
    f = [[inf] * (1 << m) for _ in range(n + 1)]
    f[0][0] = 0
    for i, (x1, y1) in enumerate(workers, 1):
      for j in range(1 << m):
        for k, (x2, y2) in enumerate(bikes):
          if j >> k & 1:
            f[i][j] = min(
              f[i][j],
              f[i - 1][j ^ (1 << k)] + abs(x1 - x2) + abs(y1 - y2),
            )
    return min(f[n])
class Solution {
  public int assignBikes(int[][] workers, int[][] bikes) {
    int n = workers.length;
    int m = bikes.length;
    int[][] f = new int[n + 1][1 << m];
    for (var g : f) {
      Arrays.fill(g, 1 << 30);
    }
    f[0][0] = 0;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j < 1 << m; ++j) {
        for (int k = 0; k < m; ++k) {
          if ((j >> k & 1) == 1) {
            int d = Math.abs(workers[i - 1][0] - bikes[k][0])
              + Math.abs(workers[i - 1][1] - bikes[k][1]);
            f[i][j] = Math.min(f[i][j], f[i - 1][j ^ (1 << k)] + d);
          }
        }
      }
    }
    return Arrays.stream(f[n]).min().getAsInt();
  }
}
class Solution {
public:
  int assignBikes(vector<vector<int>>& workers, vector<vector<int>>& bikes) {
    int n = workers.size(), m = bikes.size();
    int f[n + 1][1 << m];
    memset(f, 0x3f, sizeof(f));
    f[0][0] = 0;
    for (int i = 1; i <= n; ++i) {
      for (int j = 0; j < 1 << m; ++j) {
        for (int k = 0; k < m; ++k) {
          if (j >> k & 1) {
            int d = abs(workers[i - 1][0] - bikes[k][0]) + abs(workers[i - 1][1] - bikes[k][1]);
            f[i][j] = min(f[i][j], f[i - 1][j ^ (1 << k)] + d);
          }
        }
      }
    }
    return *min_element(f[n], f[n] + (1 << m));
  }
};
func assignBikes(workers [][]int, bikes [][]int) int {
  n, m := len(workers), len(bikes)
  f := make([][]int, n+1)
  const inf = 1 << 30
  for i := range f {
    f[i] = make([]int, 1<<m)
    for j := range f[i] {
      f[i][j] = inf
    }
  }
  f[0][0] = 0
  for i := 1; i <= n; i++ {
    for j := 0; j < 1<<m; j++ {
      for k := 0; k < m; k++ {
        if j>>k&1 == 1 {
          d := abs(workers[i-1][0]-bikes[k][0]) + abs(workers[i-1][1]-bikes[k][1])
          f[i][j] = min(f[i][j], f[i-1][j^(1<<k)]+d)
        }
      }
    }
  }
  return slices.Min(f[n])
}

func abs(x int) int {
  if x < 0 {
    return -x
  }
  return x
}
function assignBikes(workers: number[][], bikes: number[][]): number {
  const n = workers.length;
  const m = bikes.length;
  const inf = 1 << 30;
  const f: number[][] = new Array(n + 1).fill(0).map(() => new Array(1 << m).fill(inf));
  f[0][0] = 0;
  for (let i = 1; i <= n; ++i) {
    for (let j = 0; j < 1 << m; ++j) {
      for (let k = 0; k < m; ++k) {
        if (((j >> k) & 1) === 1) {
          const d =
            Math.abs(workers[i - 1][0] - bikes[k][0]) +
            Math.abs(workers[i - 1][1] - bikes[k][1]);
          f[i][j] = Math.min(f[i][j], f[i - 1][j ^ (1 << k)] + d);
        }
      }
    }
  }
  return Math.min(...f[n]);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文