第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
基于期权定价的兴全合润基金交易策略
版本:1.1
作者:李丞
摘要
分级基金是中国金融市场化下创新的产物,多数是以AB端分级,A端获取相对保守收益,B端获取杠杆收益的结构。通俗的讲,在分级基金结构中,大多数情况下,B端优先承受市场风险损失,换取A端“借”给它钱投资的融资优势。
现在市场上大多数的指数型分级基金采取的收益分配模式为:A端获取固定的约定收益率,多半为一年期定存+x%;B端获取剩余的母基金净资产。这样的分级基金可以看做A端是一个固定利率债券,B端是一个看涨期权,其中的期权卖方恰恰是A端。在这里我们不会详细探讨这一类型的结构,关于这一类型分级基金的期权分析可以参考[1]。
这里我们会看一个有趣的产品,在这个产品中,A、B端都是期权形式的[1]。这个产品就是兴全合润分级基金.
1. 兴全合润期权结构分析
收益的结构最容易以一张图的形式表示出来:
from matplotlib import pyplot
import numpy as np
import pandas as pd
import seaborn as sns
def AReturn(base):
if base < 1.21:
return 1.0
else:
return base - 0.21
def BReturn(base):
if base < 0.5:
return 0.1 / 0.6
elif base < 1.21:
return (base - 0.4) / 0.6
else:
return base + 0.14
xspace = np.linspace(0.2, 1.5, 40)
aSeries = [AReturn(x) for x in xspace]
bSeries = [BReturn(x) for x in xspace]
pyplot.figure(figsize=(12,8))
pyplot.plot(xspace, xspace, '-k')
pyplot.plot(xspace, aSeries, '-.k')
pyplot.plot(xspace, bSeries, '--k')
pyplot.xlim((0.2,1.5))
pyplot.legend(['NAV', 'A', 'B'], loc = 'best', fontsize = 16)
<matplotlib.legend.Legend at 0x64f2d10>
收益的描述也可以用下式描述,其中 NAV 为母基金净值:
可以看到,这两个子基金的价值都是三个期权的组合,只是权重不同:
A份额买入一份行权价为1.21元的期权
B份额买入5/3份行权价为0的看涨期权,同时卖出2/3份行权价为1.21元的看涨期权
对于这些期权,我们可以假设标的即为母基金净值,期限为当前日期到下一个折算日(下一个折算日为2016年4月22日),无风险利率使用3个月Shibor做简单的近似:
# 导入需要的模块
from CAL.PyCAL import *
# 读入外部行情数据
data = pd.read_excel(r'xqhr.xlsx','Sheet1')
riskFree = data['Shibor 3M'] / 100.0
maturity = data['Maturity']
spot = data['163406.OFCN']
ATarget = data['150016.XSHE']
BTarget = data['150017.XSHE']
def AOptionPrice(vol, riskFree, maturity, spot):
price1 = BSMPrice(1, 1.21, spot, riskFree, 0.0, vol[0], maturity, rawOutput = True)
return 1.0*np.exp(-riskFree*maturity) + price1[0]
def BOptionPrice(vol, riskFree, maturity, spot):
price1 = BSMPrice(1, 1.21, spot, riskFree, 0.0, vol[0], maturity, rawOutput = True)
return -2.0/3.0*np.exp(-riskFree*maturity) + 5.0/3.0 * spot - 2.0/3.0 * price1[0]
aTheoreticalPrice = AOptionPrice([0.09], riskFree, maturity, spot)
bTheoreticalPrice = BOptionPrice([0.09], riskFree, maturity, spot)
我们分别看一下,AB端基金理论价格和实际收盘价之间的关系(上面的计算中假设波动率为15%):可以看到,基本上理论价格和真实价格的变动是完全同向的,但是存在价差,A长期折价,B长期溢价。这个价差随着到期折算日的接近,收敛至0。这个是与期权的性质是完全一致的。
data['A (Theoretical)'] = aTheoreticalPrice
data['B (Theoretical)'] = bTheoreticalPrice
pyplot.figure(figsize = (16,10))
ax1 = pyplot.subplot('211')
data.plot('endDate', ['150016.XSHE','A (Theoretical)'], style = ['-.k', '-k'])
ax1.legend(['A', 'A (Theoretical)'], loc = 'best')
ax2 = pyplot.subplot('212')
data.plot('endDate', ['150017.XSHE','B (Theoretical)'], style = ['-.k', '-k'])
ax2.legend(['B', 'B (Theoretical)'], loc = 'best')
<matplotlib.legend.Legend at 0x7134610>
2. 兴全合润的期权投资策略
根据上面的分析,似乎读者可以得到这样的一个印象:A端长期比较便宜,应该直接持有A端,真的是这样吗?这里面实际上有以下的问题:
- A端由于收益算法的原因,属于类固定收益产品,并且它在标的价格高企时,凸性为负;
- B端属于杠杆类型,在标的股价高企时,凸性为正;
- 市场可能会对凸性的不同,对于AB端分别进行折溢价调整;
- 15%是一个魔幻数(Magic Number),真实市场波动率水平显然不应该是一个常值。
这里我们将涉及一个策略,试着解释最后一个问题。期权有一种估计期权的方法,称为“隐含波动率”。我们可以把类似的想法引入我们这个产品当中,每天收盘的时候,我们可以观察到A端和B端的价格(或者说两个期权组合的价格)。这时候,可以使用优化的方法,找到一个波动率水平使得理论价格在某种标准下与实际价格差异最小。我们把这个波动率水平称之为瑞和300的“隐含波动率”。
有了这个隐含波动率水平,我们可以再计算理论价格,这时候计算而得的理论价格,我们可以认为是“真实”市场估计下的理论期权价值。用这个价格作为评估的标准,比较A端与B端那个更加便宜,从而决定购买哪个产品。下面的策略中,我们即使用上面介绍的办法,每天调仓,根据估价的高低,分别购买A端(B端),同时卖出B端(A端)。这个策略只在二级市场中进行交易。具体的参数如下:
本策略的参数如下:
- 起始日期: 2010年5月31日
- 结束日期: 2015年3月27日
- 起始资金: 100000元
- 调仓周期: 每个交易日
prices1 = []
prices2 = []
aTarget = []
bTarget = []
def processDate(record):
riskFree = record['Shibor 3M'] / 100.0
maturity = record['Maturity']
spot = record['163406.OFCN']
ATarget = record['150016.XSHE']
BTarget = record['150017.XSHE']
def errorFunction(vol):
price1 = AOptionPrice(vol, riskFree, maturity, spot)
price2 = BOptionPrice(vol, riskFree, maturity, spot)
return (price1 - ATarget)**2 + (price2 - BTarget)**2
out, fx, its, imode, smode = optimize.fmin_slsqp(errorFunction, [0.15], bounds = [(0.01, 0.25)], epsilon = 1e-6, iter = 10000, disp = False, full_output = True, acc = 1e-16)
price1 = AOptionPrice(out, riskFree, maturity, spot)
price2 = BOptionPrice(out, riskFree, maturity, spot)
prices1.append(price1)
prices2.append(price2)
aTarget.append(ATarget)
bTarget.append(BTarget)
return price1 - ATarget, price2 - BTarget
import datetime as dt
from scipy import optimize
callDate = [dt.datetime(2013,4,19)]
class deque:
def __init__(self, maxlen):
self.maxlen = maxlen
self.cont = []
def append(self,vec):
self.cont.append(vec)
if len(self.cont)>self.maxlen:
self.cont = self.cont[len(self.cont) - self.maxlen:]
def __item__(self, i):
return self.cont[i]
def average(self):
sum = 0.0
for i in xrange(len(self.cont)):
sum += self.cont[i]
return sum / float(len(self.cont))
class Account:
def __init__(self, cash, commission = 0.0005):
self.aAmount = 0
self.bAmount = 0
self.commission = commission
self.cash = cash
def order(self, amount, fundType, price):
if fundType.upper() == 'A':
self.aAmount += amount
if amount> 0:
self.cash -= amount * price * (1.0 + self.commission)
else:
self.cash -= amount * price * (1.0 - self.commission)
elif fundType.upper() == 'B':
self.bAmount += amount
if amount> 0:
self.cash -= amount * price * (1.0 + self.commission)
else:
self.cash -= amount * price * (1.0 - self.commission)
def currentValue(self, aQuote, bQuote):
return self.aAmount * aQuote + self.bAmount * bQuote + self.cash
def BackTesting(data, window = 20, startAmount = 100000, tradeVol = 2000):
account = Account(startAmount)
aWindow = deque(maxlen = window)
bWindow = deque(maxlen = window)
performance = [startAmount]
aVol = [0]
bVol = [0]
cash = [startAmount]
for i in xrange(1, len(data)):
previousDay = data.loc[i-1]
aUnderEstimated, bUnderEstimated = processDate(previousDay)
aWindow.append(aUnderEstimated)
bWindow.append(bUnderEstimated)
aAverage = aWindow.average()
bAverage = bWindow.average()
today = data.loc[i]
aPrice = today['150016.XSHE']
bPrice = today['150017.XSHE']
if i >= 5:
# 如果分级A端相对于B端更便宜
if aUnderEstimated - aAverage > bUnderEstimated - bAverage:
if account.cash > tradeVol:
account.order(tradeVol, 'A', aPrice)
if account.bAmount >0:
account.order(-tradeVol, 'B', bPrice)
# 如果分级B端相对于A端更便宜
elif aUnderEstimated - aAverage < bUnderEstimated - bAverage:
if account.cash > tradeVol:
account.order(tradeVol, 'B', bPrice)
if account.aAmount >0:
account.order(-tradeVol, 'A', aPrice)
for calDate in callDate:
if today['endDate'] == calDate:
account.order(-account.aAmount, 'A', aPrice)
account.order(-account.bAmount, 'B', bPrice)
performance.append(account.currentValue(aPrice, bPrice))
aVol.append(account.aAmount)
bVol.append(account.bAmount)
cash.append(account.cash)
originalReturn = data[['150016.XSHE', '150017.XSHE', '163406.OFCN']].values
start = originalReturn[0]
originalReturn[0] = 1.0
dates = data['endDate']
scalar = 1.0
count = 0
for i in xrange(1, len(originalReturn)):
if count < len(callDate) and dates[i-1] == callDate[count]:
start = originalReturn[i]
originalReturn[i] = originalReturn[i-1]
count += 1
else:
scalar = originalReturn[i] / start
start = originalReturn[i]
originalReturn[i] = originalReturn[i-1] * scalar
scalar = float(performance[0])
performance = [p / scalar for p in performance]
return pd.DataFrame({'Performance':performance, '150016.XSHE': aVol, '150017.XSHE': bVol, 'Cash': cash, '163406.OFCN': data['163406.OFCN'].values, 'A Performance': originalReturn[:,0], 'B Performance': originalReturn[:,1],'Benchmark Return':originalReturn[:,2]} ,index = data.endDate)
bt = BackTesting(data, tradeVol = 20000)
bt.plot(y = ['Benchmark Return', 'Performance', 'A Performance', 'B Performance'], figsize = (16,8), style = ['-k', '-.k'])
pyplot.legend( ['Benchmark', 'Strategy', 'A', 'B'], loc = 'best')
<matplotlib.legend.Legend at 0x7285510>
由上图可知,这样的策略是比较典型的指数增强型策略
res = pd.DataFrame({'A (Implied)': prices1, 'B (Implied)':prices2, 'A': aTarget, 'B': bTarget}, index = data.endDate[1:])
pyplot.figure(figsize = (16,10))
ax1 = pyplot.subplot('211')
res.plot(y = ['A (Implied)', 'A'], style = ['-k', '-.k'])
pyplot.legend(['A (Implied)', 'A'])
ax1 = pyplot.subplot('212')
res.plot(y = ['B (Implied)', 'B'], style = ['-k', '-.k'])
pyplot.legend(['B (Implied)', 'B'])
<matplotlib.legend.Legend at 0x7804290>
3. 我们是否能够比“猴子”做的更好?
作为和该策略的比较,我们可以使用一个随机投资的做法。让我们看看,和“猴子”(Monky Random Choice Strategy)比,我们是否能够做的更好?
def BackTesting2(data, window = 20, startAmount = 100000, tradeVol = 2000):
account = Account(startAmount)
performance = [startAmount]
aVol = [0]
bVol = [0]
cash = [startAmount]
s = MersenneTwister19937UniformRsg(seed = 1234)
for i in xrange(1, len(data)):
previousDay = data.loc[i-1]
aUnderEstimated, bUnderEstimated = processDate(previousDay)
today = data.loc[i]
aPrice = today['150016.XSHE']
bPrice = today['150017.XSHE']
if i >= 5:
# 如果随机数>0.5
if s.nextSequence()[0] > 0.5:
if account.cash > tradeVol:
account.order(tradeVol, 'A', aPrice)
if account.bAmount >0:
account.order(-tradeVol, 'B', bPrice)
# 如果随机数<0.5
elif s.nextSequence()[0] < 0.5:
if account.cash > tradeVol:
account.order(tradeVol, 'B', bPrice)
if account.aAmount >0:
account.order(-tradeVol, 'A', aPrice)
for calDate in callDate:
if today['endDate'] == calDate:
account.order(-account.aAmount, 'A', aPrice)
account.order(-account.bAmount, 'B', bPrice)
performance.append(account.currentValue(aPrice, bPrice))
aVol.append(account.aAmount)
bVol.append(account.bAmount)
cash.append(account.cash)
originalReturn = list(data['163406.OFCN'].values)
start = originalReturn[0]
originalReturn[0] = 1.0
dates = data['endDate']
scalar = 1.0
count = 0
for i in xrange(1, len(originalReturn)):
if count < len(callDate) and dates[i-1] == callDate[count]:
start = originalReturn[i]
originalReturn[i] = originalReturn[i-1]
count += 1
else:
scalar = originalReturn[i] / start
start = originalReturn[i]
originalReturn[i] = originalReturn[i-1] * scalar
scalar = float(performance[0])
performance = [p / scalar for p in performance]
return pd.DataFrame({'Performance':performance, '150016.XSHE': aVol, '150017.XSHE': bVol, 'Cash': cash, '163406.OFCN': data['163406.OFCN'].values, 'Benchmark Return':originalReturn } ,index = data.endDate)
bt1 = BackTesting(data, tradeVol = 20000)
bt2 = BackTesting2(data, tradeVol = 20000)
bt1['Monky'] = bt2['Performance']
bt1.plot(y = ['Benchmark Return', 'Monky', 'Performance'], figsize = (16,8), style = ['-k', '--k', '-.k'])
pyplot.legend( ['Benchmark', 'Monkey', 'Strategy'], loc = 'best')
<matplotlib.legend.Legend at 0x7804150>
结果令人满意,我们的期权投资比随机选择的结果好的多。我们看到如果随机投资,“猴子”式的选择并不能显著的击败标的母基金。但是我们的期权投资策略还是可以保持的持续性的跑赢指数以及随机选择。
4. 使用历史波动率
这里我们给了一个使用历史波动率计算折溢价水平,与之前使用的隐含波动率方法进行比较。这里使用的历史波动率水平是20天年化收益标准差。结果上,我们无法显著区别这两种波动率算法在表现上面的区别。但是他们都可以显著的击败标的母基金。
def processDate2(record):
riskFree = record['Shibor 3M'] / 100.0
maturity = record['Maturity']
spot = record['163406.OFCN']
ATarget = record['150016.XSHE']
BTarget = record['150017.XSHE']
volatility = record['volatility']
vol = [volatility]
price1 = AOptionPrice(vol, riskFree, maturity, spot)
price2 = BOptionPrice(vol, riskFree, maturity, spot)
return price1 - ATarget, price2 - BTarget
def BackTesting3(data, window = 20, startAmount = 100000, tradeVol = 2000):
account = Account(startAmount)
aWindow = deque(maxlen = window)
bWindow = deque(maxlen = window)
performance = [startAmount]
aVol = [0]
bVol = [0]
cash = [startAmount]
for i in xrange(1, len(data)):
previousDay = data.loc[i-1]
aUnderEstimated, bUnderEstimated = processDate2(previousDay)
aWindow.append(aUnderEstimated)
bWindow.append(bUnderEstimated)
aAverage = aWindow.average()
bAverage = bWindow.average()
today = data.loc[i]
aPrice = today['150016.XSHE']
bPrice = today['150017.XSHE']
if i >= 5:
# 如果分级A端相对于B端更便宜
if aUnderEstimated - aAverage > bUnderEstimated - bAverage:
if account.cash > tradeVol:
account.order(tradeVol, 'A', aPrice)
if account.bAmount >0:
account.order(-tradeVol, 'B', bPrice)
# 如果分级B端相对于A端更便宜
elif aUnderEstimated - aAverage < bUnderEstimated - bAverage:
if account.cash > tradeVol:
account.order(tradeVol, 'B', bPrice)
if account.aAmount >0:
account.order(-tradeVol, 'A', aPrice)
for calDate in callDate:
if today['endDate'] == calDate:
account.order(-account.aAmount, 'A', aPrice)
account.order(-account.bAmount, 'B', bPrice)
performance.append(account.currentValue(aPrice, bPrice))
aVol.append(account.aAmount)
bVol.append(account.bAmount)
cash.append(account.cash)
originalReturn = list(data['163406.OFCN'].values)
start = originalReturn[0]
originalReturn[0] = 1.0
dates = data['endDate']
scalar = 1.0
count = 0
for i in xrange(1, len(originalReturn)):
if count < len(callDate) and dates[i-1] == callDate[count]:
start = originalReturn[i]
originalReturn[i] = originalReturn[i-1]
count += 1
else:
scalar = originalReturn[i] / start
start = originalReturn[i]
originalReturn[i] = originalReturn[i-1] * scalar
scalar = float(performance[0])
performance = [p / scalar for p in performance]
return pd.DataFrame({'Performance':performance, '150016.XSHE': aVol, '150017.XSHE': bVol, 'Cash': cash, '163406.OFCN': data['163406.OFCN'].values, 'Benchmark Return':originalReturn } ,index = data.endDate)
bt3 = BackTesting3(data, tradeVol = 20000)
bt1['Historical (Vol)'] = bt3['Performance']
bt1.plot(y = ['Benchmark Return', 'Historical (Vol)', 'Performance'], figsize = (16,8), style = ['-k', '--k', '-.k'])
pyplot.legend( ['Benchmark', 'Historical Vol', 'Implied Vol'], loc = 'best')
<matplotlib.legend.Legend at 0x7841410>
5. 风险收益分析
下面我们按照每个自然年评估策略的绩效。可以看到在5个自然年中,只有一年的收益为负;更值得关注的是,这个策略相对于原策略都录得了正的超额收益。
value = bt1[['Performance', 'Benchmark Return']]
value['endDate'] = value.index.values
returnRes = [0]
tmp = np.log(value['Performance'][1:].values/ value['Performance'][:-1].values)
returnRes.extend(tmp)
value['Per. Return'] = returnRes
returnRes = [0]
tmp = np.log(value['Benchmark Return'][1:].values/ value['Benchmark Return'][:-1].values)
returnRes.extend(tmp)
value['Benchmark Return'] = returnRes
year2010 = value[(value['endDate'] > Date(2010,1,1).toTimestamp()) & (value['endDate'] <= Date(2010,12,31).toTimestamp())]
year2011 = value[(value['endDate'] > Date(2011,1,1).toTimestamp()) & (value['endDate'] <= Date(2011,12,31).toTimestamp())]
year2012 = value[(value['endDate'] > Date(2012,1,1).toTimestamp()) & (value['endDate'] <= Date(2012,12,31).toTimestamp())]
year2013 = value[(value['endDate'] > Date(2013,1,1).toTimestamp()) & (value['endDate'] <= Date(2013,12,31).toTimestamp())]
year2014 = value[(value['endDate'] > Date(2014,1,1).toTimestamp()) & (value['endDate'] <= Date(2014,12,31).toTimestamp())]
year2015 = value[(value['endDate'] > Date(2015,1,1).toTimestamp()) & (value['endDate'] <= Date(2015,12,31).toTimestamp())]
days = 252
def perRes(yearRes):
yearRes['Excess Return'] = yearRes['Per. Return'] - yearRes['Benchmark Return']
mean = yearRes.mean() * days * 100
std = yearRes.std() * np.sqrt(days) * 100
return mean['Per. Return'], mean['Excess Return'], std['Per. Return']
res2010 = perRes(year2010)
res2011 = perRes(year2011)
res2012 = perRes(year2012)
res2013 = perRes(year2013)
res2014 = perRes(year2014)
res2015 = perRes(year2015)
perRet = []
exceRet= []
perStd = []
for res in [res2010, res2011, res2012, res2013, res2014, res2015]:
perRet.append(res[0])
exceRet.append(res[1])
perStd.append(res[2])
resTable = pd.DataFrame({'Strategy (Return %)':perRet, 'Excess (Return %)':exceRet, 'Strategy (Volatility %)':perStd }, index = ['2010', '2011', '2012', '2013', '2014', '2015'])
resTable.index.name = 'Year'
resTable.plot(kind = 'bar', figsize = (14,8), legend = True)
<matplotlib.axes.AxesSubplot at 0x82f4b50>
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论