返回介绍

Xparl 并行概览

发布于 2024-06-23 17:58:49 字数 1116 浏览 0 评论 0 收藏 0

简单易用

通过一个简单的修饰符 @parl.remote_class ,用户就可以很简单地实现并行计算,无需关注繁琐的多进程通讯以及网络通讯,也不受Python多线程GIL锁的限制。

高性能

@parl.remote_class 可以让我们实现真正意义上的多线程并发计算(堪比C++的多线程)。正如下图a所示,python原生的多线程加速表现很糟糕(由于全局锁GIL的存在),但是我们可以看到,PARL的并行可以线性地减少运行时间,从而提升并发效率。

Web 页面监控集群信息

在多机并行计算的时候,PARL在启动集群的时候提供了web服务,用户可以通过这个页面查看每台机器上的内存、CPU使用率等,同时也可以查看每个任务占用了多少集群资源。

全框架兼容

PARL的并行可以兼容目前市场上的任何深度学习框架,比如tensorflow、pytorch、mxnet等。通过增加并行修饰符 @parl.remote_class ,用户就可以把他们之前的代码转换成并行代码。

为什么用PARL

高吞吐量、高并发

PARL在实现底层的并行计算时,是通过端到端的这种网络传输,也就是在进行并发任务时,没有额外的网络损耗。这种并行设计,相比于RLlib需要通过Redis进行数据中转,PARL在同样的时间内,有更高的数据吞吐量。根据我们之前做的实验对比,运行同样的IMPALA算法,在同样的机器上,PARL的并行性能是更优秀的。

自动分发本地文件

市面上的并行框架大部分得要用户手动同步文件才可以跑起并行代码,比如配置文件得要手动或者通过命令分发到不同机器,parl可以自动分发当前目录下的代码文件,实现无缝的多机并行。

https://www.wenjiangs.com/wp-content/uploads/2024/docimg5/comparison.png

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文