- 第一章 SystemVerilog导论
- 第二章 文本值
- 第三章 数据类型
- 第四章 数组
- 第五章 数据声明
- 第六章 属性
- 第七章 操作符与表达式
- 第八章 过程语句和控制流
- 第九章 进程
- 第十章 任务与函数
- 第十一章 类
- 第十二章 随机约束
- 第十三章 进程间的同步与通信
- 第十四章 调度语义
- 第十五章 时钟控制块
- 第十六章 程序块
- 第十七章 断言
- 第十八章 层次
- 第十九章 接口
- 第二十章 覆盖
- 第二十一章 参数
- 第二十二章 配置库
- 第二十三章 系统任务与系统函数
- 23.1 简介(一般信息)
- 23.2 确立时的typeof函数
- 23.3 typename函数
- 23.4 表达式尺寸系统函数
- 23.5 范围系统函数
- 23.6 Shortreal转换
- 23.7 数组查询系统函数
- 23.8 断言严重性系统任务
- 23.9 断言控制系统任务
- 23.10 断言系统函数
- 23.11 随机数系统函数
- 23.12 程序控制
- 23.13 覆盖系统函数
- 23.14 对Verilog-2001系统任务的增强
- 23.15 $readmemb与$readmemh
- 23.16 $writememb and $writememh
- 23.17 File format considerations for multi-dimensional unpacked arrays
- 23.18 System task arguments for multi-dimensional unpacked arrays
- 第二十四章 VCD数据
- 第二十五章 编译器指令
- 第二十六章 考虑从SystemVerilog中删除的功能
- 第二十七章 直接编程接口(DPI)
- 27.1 概述
- 27.2 Two layers of the DPI
- 27.3 Global name space of imported and exported functions
- 27.4 导入的任务和函数
- 27.5 Calling imported functions
- 27.6 Exported functions
- 27.7 Exported tasks
- 27.8 Disabling DPI tasks and functions
- 第二十八章 SystemVerilog断言API
- 第二十九章 SystemVerilog覆盖API
- 29.1 需求
- 29.2 SystemVerilog real-time coverage access
- 29.3 FSM recognition
- 29.3.1 Specifying the signal that holds the current state
- 29.3.2 Specifying the part-select that holds the current state
- 29.3.3 Specifying the concatenation that holds the current state
- 29.3.4 Specifying the signal that holds the next state
- 29.3.5 Specifying the current and next state signals in the same declaration
- 29.3.6 Specifying the possible states of the FSM
- 29.3.7 Pragmas in one-line comments
- 29.3.8 Example
- 29.4 VPI coverage extensions
- 第三十章 SystemVerilog数据读API
- 30.1 简介(一般信息)
- 30.2 需求
- 30.3 Extensions to VPI enumerations
- 30.4 VPI object type additions
- 30.5 Object model diagrams
- 30.6 Usage extensions to VPI routines
- 30.7 VPI routines added in SystemVerilog
- 30.8 Reading data
- 30.9 Optionally unloading the data
- 30.10 Reading data from multiple databases and/or different read library providers
- 30.11 VPI routines extended in SystemVerilog
- 30.12 VPI routines added in SystemVerilog
- 30.12.1 VPI reader routines
- 第三十一章 SystemVerilog VPI Object Model
- 31.1 简介(一般信息)
- 31.2 Instance
- 31.3 Interface
- 31.4 Program
- 31.5 Module (supersedes IEEE 1364-2001 26.6.1)
- 31.6 Modport
- 31.7 Interface tf decl
- 31.8 Ports (supersedes IEEE 1364-2001 26.6.5)
- 31.9 Ref Obj
- 31.9.1 Examples
- 31.10 Variables (supersedes IEEE 1364-2001 section 26.6.8)
- 31.11 Var Select (supersedes IEEE 1364-2001 26.6.8)
- 31.12 Typespec
- 31.13 Variable Drivers and Loads (supersedes IEEE 1364-2001 26.6.23)
- 31.14 Instance Arrays (supersedes IEEE 1364-2001 26.6.2)
- 31.15 Scope (supersedes IEEE 1364-2001 26.6.3)
- 31.16 IO Declaration (supersedes IEEE 1364-2001 26.6.4)
- 31.17 Clocking Block
- 31.18 Class Object Definition
- 31.19 Constraint, constraint ordering, distribution,
- 31.20 Constraint expression
- 31.21 Class Variables
- 31.22 Structure/Union
- 31.23 Named Events (supersedes IEEE 1364-2001 26.6.11)
- 31.24 Task, Function Declaration (supersedes IEEE 1364-2001 26.6.18)
- 31.25 Alias Statement
- 31.25.1 Examples
- 31.26 Frames (supersedes IEEE 1364-2001 26.6.20)
- 31.27 Threads
- 31.28 tf call (supersedes IEEE 1364-2001 26.6.19)
- 31.29 Module path, path term (supersedes IEEE 1364-2001 26.6.15)
- 31.30 Concurrent assertions
- 31.31 Property Decl
- 31.32 Property Specification
- 31.33 Multiclock Sequence Expression
- 31.34 Sequence Declaration
- 31.35 Sequence Expression
- 31.36 Attribute (supersedes IEEE 1364-2001 26.6.42)
- 31.37 Atomic Statement (supersedes IEEE 1364-2001 26.6.27)
- 31.38 If, if else, return, case, do while (supersedes IEEE 1364-2001 26.6.35, 26.6.36)
- 31.39 waits, disables, expect, foreach (supersedes IEEE 1364 26.6.38)
- 31.40 Simple expressions (supersedes IEEE 1364-2001 26.6.25)
- 31.41 Expressions (supersedes IEEE 1364-2001 26.6.26)
- 31.42 Event control (supersedes IEEE 1364-2001 26.6.30)
- 31.43 Event stmt (supersedes IEEE 1364-2001 26.6.27)
- 31.44 Process (supersedes IEEE 1364-2001 26.6.27)
- 31.45 Assignment (supersedes IEEE 1364-2001 26.6.28)
- 附录A 形式语法
- A.1 源文本
- A.2 声明
- A.3 Primitive instances
- A.4 Module, interface and generated instantiation
- A.5 UDP declaration and instantiation
- A.6 Behavioral statements
- A.6.1 Continuous assignment and net alias statements
- A.6.2 Procedural blocks and assignments
- A.6.3 Parallel and sequential blocks
- A.6.4 Statements
- A.6.5 Timing control statements
- A.6.6 Conditional statements
- A.6.7 Case statements
- A.6.8 Looping statements
- A.6.9 Subroutine call statements
- A.6.10 Assertion statements
- A.6.11 Clocking block
- A.6.12 Randsequence
- A.7 Specify section
- A.8 Expressions
- A.9 General
- A.10 Footnotes (normative)
- 附录B 关键字
- 附录C 标准包
- 附录D 链表
- 附录E DPI C-layer
- E.1 概述
- E.2 Naming conventions
- E.3 Portability
- E.4 Include files
- E.5 Semantic constraints
- E.6 Data types
- E.7 Argument passing modes
- E.8 Context tasks and functions
- E.9 Include files
- E.10 Arrays
- E.11 Open arrays
- E.11.1 Actual ranges
- E.11.2 Array querying functions
- E.11.3 Access functions
- E.11.4 Access to the actual representation
- E.11.5 Access to elements via canonical representation
- E.11.6 Access to scalar elements (bit and logic)
- E.11.7 Access to array elements of other types
- E.11.8 Example 4— two-dimensional open array
- E.11.9 Example 5 — open array
- E.11.10 Example 6 — access to packed arrays
- E.11.11 Example 7 — binary compatible calls of exported functions
- 附录F 包含文件
- 附录G 包含外部语言代码
- 附录H 并发断言的形式语义
- 附录I svvpiuser.h
- 附录J 术语表
- 附录K 参考书目
- 其他
20.3 在类中使用covergroup
By embedding a coverage group within a class definition, the covergroup provides a simple way to cover a subset of the class properties. This integration of coverage with classes provides an intuitive and expressive mechanism for defining the coverage model associated with a class. For example, In class xyz, defined below, members m_x and m_y are covered using an embedded covergroup:
class xyz; bit [3:0] m_x; int m_y; bit m_z; covergroup cov1 @m_z; // embedded covergroup coverpoint m_x; coverpoint m_y; endgroup function new(); cov1 = new; endfunction endclass
In this example, data members m_x and m_y of class xyz are sampled on every change of data member m_z. When a covergroup is defined within a class, and no explicit variables of that covergroup are declared in the class then a variable with the same name as the coverage group is implicitly declared, e.g, in the above example, a variable cov1 (of the embedded coverage group) is implicitly declared. Whether the coverage group variable is implicitly or explicitly declared, each class contains exactly one variable of each embedded coverage group. Each embedded coverage group thus becomes part of the class, tightly binding the class properties to the coverage definition. Declaring multiple variables of the same embedded coverage group shall result in a compiler error.
An embedded covergroup can define a coverage model for protected and local class properties without any changes to the class data encapsulation. Class members can become coverage points or can be used in other coverage constructs, such as conditional guards or option initialization.
A class can have more than one covergroup. The following example shows two cover groups in class MC.
class MC; logic [3:0] m_x; local logic m_z; bit m_e; covergroup cv1 @(posedge clk); coverpoint m_x; endgroup covergroup cv2 @m_e ; coverpoint m_z; endgroup endclass
In covergroup cv1, public class member variable m_x is sampled at every positive edge of signal clk. Local class member m_z is covered by another covergroup cv2. Each coverage groups is sampled by a different clocking event.
An embedded coverage group must be explicitly instantiated in the new method. If it is not, then the coverage group is not created and no data will be sampled.
Below is an example of an embedded coverage_group that does not have any passed-in arguments, and uses explicit instantiation to synchronize with another object:
class Helper; int m_ev; endclass class MyClass; Helper m_obj; int m_a; covergroup Cov @(m_obj.m_ev); coverpoint m_a; endgroup function new(); m_obj = new; Cov = new; // Create embedded covergroup after creating m_obj endfunction endclass
In this example, covergroup Cov is embedded within class MyClass, which contains an object of type Helper class, called m_obj. The clocking event for the embedded coverage group refers to data member m_ev of m_obj. Because the coverage group Cov uses m_obj, m_obj must be instantiated before Cov. Therefore, the coverage group Cov is instantiated after instantiating m_obj in the class constructor. As shown above, the instantiation of an embedded coverage group is done by assigning the result of the new operator to the coverage group identifier.
The following example shows how arguments passed in to an embedded coverage group can be used to set a coverage option of the coverage group.
class C1; bit [7:0] x; covergroup cv (int arg) @(posedge clk); option.at_least = arg; coverpoint x; endgroup function new(int p1); cv = new(p1); endfunction endclass initial begin C1 obj = new(4); end
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论