返回介绍

solution / 1400-1499 / 1428.Leftmost Column with at Least a One / README_EN

发布于 2024-06-17 01:03:19 字数 8815 浏览 0 评论 0 收藏 0

1428. Leftmost Column with at Least a One

中文文档

Description

A row-sorted binary matrix means that all elements are 0 or 1 and each row of the matrix is sorted in non-decreasing order.

Given a row-sorted binary matrix binaryMatrix, return _the index (0-indexed) of the leftmost column with a 1 in it_. If such an index does not exist, return -1.

You can't access the Binary Matrix directly. You may only access the matrix using a BinaryMatrix interface:

  • BinaryMatrix.get(row, col) returns the element of the matrix at index (row, col) (0-indexed).
  • BinaryMatrix.dimensions() returns the dimensions of the matrix as a list of 2 elements [rows, cols], which means the matrix is rows x cols.

Submissions making more than 1000 calls to BinaryMatrix.get will be judged _Wrong Answer_. Also, any solutions that attempt to circumvent the judge will result in disqualification.

For custom testing purposes, the input will be the entire binary matrix mat. You will not have access to the binary matrix directly.

 

Example 1:

Input: mat = [[0,0],[1,1]]
Output: 0

Example 2:

Input: mat = [[0,0],[0,1]]
Output: 1

Example 3:

Input: mat = [[0,0],[0,0]]
Output: -1

 

Constraints:

  • rows == mat.length
  • cols == mat[i].length
  • 1 <= rows, cols <= 100
  • mat[i][j] is either 0 or 1.
  • mat[i] is sorted in non-decreasing order.

Solutions

Solution 1: Binary Search

First, we call BinaryMatrix.dimensions() to get the number of rows $m$ and columns $n$ of the matrix. Then for each row, we use binary search to find the column number $j$ where the leftmost $1$ is located. The smallest $j$ value that satisfies all rows is the answer. If there is no such column, return $-1$.

The time complexity is $O(m \times \log n)$, where $m$ and $n$ are the number of rows and columns of the matrix, respectively. We need to traverse each row, and use binary search within each row, which has a time complexity of $O(\log n)$. The space complexity is $O(1)$.

# """
# This is BinaryMatrix's API interface.
# You should not implement it, or speculate about its implementation
# """
# class BinaryMatrix(object):
#  def get(self, row: int, col: int) -> int:
#  def dimensions(self) -> list[]:


class Solution:
  def leftMostColumnWithOne(self, binaryMatrix: "BinaryMatrix") -> int:
    m, n = binaryMatrix.dimensions()
    ans = n
    for i in range(m):
      j = bisect_left(range(n), 1, key=lambda k: binaryMatrix.get(i, k))
      ans = min(ans, j)
    return -1 if ans >= n else ans
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * interface BinaryMatrix {
 *   public int get(int row, int col) {}
 *   public List<Integer> dimensions {}
 * };
 */

class Solution {
  public int leftMostColumnWithOne(BinaryMatrix binaryMatrix) {
    List<Integer> e = binaryMatrix.dimensions();
    int m = e.get(0), n = e.get(1);
    int ans = n;
    for (int i = 0; i < m; ++i) {
      int l = 0, r = n;
      while (l < r) {
        int mid = (l + r) >> 1;
        if (binaryMatrix.get(i, mid) == 1) {
          r = mid;
        } else {
          l = mid + 1;
        }
      }
      ans = Math.min(ans, l);
    }
    return ans >= n ? -1 : ans;
  }
}
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public:
 *   int get(int row, int col);
 *   vector<int> dimensions();
 * };
 */

class Solution {
public:
  int leftMostColumnWithOne(BinaryMatrix& binaryMatrix) {
    auto e = binaryMatrix.dimensions();
    int m = e[0], n = e[1];
    int ans = n;
    for (int i = 0; i < m; ++i) {
      int l = 0, r = n;
      while (l < r) {
        int mid = (l + r) >> 1;
        if (binaryMatrix.get(i, mid)) {
          r = mid;
        } else {
          l = mid + 1;
        }
      }
      ans = min(ans, l);
    }
    return ans >= n ? -1 : ans;
  }
};
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * type BinaryMatrix struct {
 *   Get func(int, int) int
 *   Dimensions func() []int
 * }
 */

func leftMostColumnWithOne(binaryMatrix BinaryMatrix) int {
  e := binaryMatrix.Dimensions()
  m, n := e[0], e[1]
  ans := n
  for i := 0; i < m; i++ {
    l, r := 0, n
    for l < r {
      mid := (l + r) >> 1
      if binaryMatrix.Get(i, mid) == 1 {
        r = mid
      } else {
        l = mid + 1
      }
    }
    ans = min(ans, l)
  }
  if ans >= n {
    return -1
  }
  return ans
}
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *    get(row: number, col: number): number {}
 *
 *    dimensions(): number[] {}
 * }
 */

function leftMostColumnWithOne(binaryMatrix: BinaryMatrix) {
  const [m, n] = binaryMatrix.dimensions();
  let ans = n;
  for (let i = 0; i < m; ++i) {
    let [l, r] = [0, n];
    while (l < r) {
      const mid = (l + r) >> 1;
      if (binaryMatrix.get(i, mid) === 1) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    ans = Math.min(ans, l);
  }
  return ans >= n ? -1 : ans;
}
/**
 * // This is the BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 *  struct BinaryMatrix;
 *  impl BinaryMatrix {
 *   fn get(row: i32, col: i32) -> i32;
 *   fn dimensions() -> Vec<i32>;
 * };
 */

impl Solution {
  pub fn left_most_column_with_one(binaryMatrix: &BinaryMatrix) -> i32 {
    let e = binaryMatrix.dimensions();
    let m = e[0] as usize;
    let n = e[1] as usize;
    let mut ans = n;

    for i in 0..m {
      let (mut l, mut r) = (0, n);
      while l < r {
        let mid = (l + r) / 2;
        if binaryMatrix.get(i as i32, mid as i32) == 1 {
          r = mid;
        } else {
          l = mid + 1;
        }
      }
      ans = ans.min(l);
    }

    if ans >= n {
      -1
    } else {
      ans as i32
    }
  }
}
/**
 * // This is BinaryMatrix's API interface.
 * // You should not implement it, or speculate about its implementation
 * class BinaryMatrix {
 *   public int Get(int row, int col) {}
 *   public IList<int> Dimensions() {}
 * }
 */

class Solution {
  public int LeftMostColumnWithOne(BinaryMatrix binaryMatrix) {
    var e = binaryMatrix.Dimensions();
    int m = e[0], n = e[1];
    int ans = n;
    for (int i = 0; i < m; ++i) {
      int l = 0, r = n;
      while (l < r) {
        int mid = (l + r) >> 1;
        if (binaryMatrix.Get(i, mid) == 1) {
          r = mid;
        } else {
          l = mid + 1;
        }
      }
      ans = Math.Min(ans, l);
    }
    return ans >= n ? -1 : ans;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文