返回介绍

solution / 0900-0999 / 0907.Sum of Subarray Minimums / README_EN

发布于 2024-06-17 01:03:33 字数 9274 浏览 0 评论 0 收藏 0

907. Sum of Subarray Minimums

中文文档

Description

Given an array of integers arr, find the sum of min(b), where b ranges over every (contiguous) subarray of arr. Since the answer may be large, return the answer modulo 109 + 7.

 

Example 1:

Input: arr = [3,1,2,4]
Output: 17
Explanation: 
Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4]. 
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1.
Sum is 17.

Example 2:

Input: arr = [11,81,94,43,3]
Output: 444

 

Constraints:

  • 1 <= arr.length <= 3 * 104
  • 1 <= arr[i] <= 3 * 104

Solutions

Solution 1: Monotonic Stack

The problem asks for the sum of the minimum values of each subarray, which is equivalent to finding the number of subarrays for which each element $arr[i]$ is the minimum, then multiplying by $arr[i]$, and finally summing these up.

Therefore, the focus of the problem is to find the number of subarrays for which $arr[i]$ is the minimum. For $arr[i]$, we find the first position $left[i]$ to its left that is less than $arr[i]$, and the first position $right[i]$ to its right that is less than or equal to $arr[i]$. The number of subarrays for which $arr[i]$ is the minimum is $(i - left[i]) \times (right[i] - i)$.

Note, why do we find the first position $right[i]$ to the right that is less than or equal to $arr[i]$, rather than less than $arr[i]$? This is because if we find the first position $right[i]$ to the right that is less than $arr[i]$, it will lead to duplicate calculations.

Let's take an example to illustrate. For the following array:

The element at index $3$ is $2$, the first element to its left that is less than $2$ is at index $0$. If we find the first element to its right that is less than $2$, we get index $7$. That is, the subarray interval is $(0, 7)$. Note that this is an open interval.

0 4 3 2 5 3 2 1
*   ^     *

In the same way, we can find the subarray interval for the element at index $6$, and find that its subarray interval is also $(0, 7)$. That is, the subarray intervals for the elements at index $3$ and index $6$ are the same. This leads to duplicate calculations.

0 4 3 2 5 3 2 1
*       ^ *

If we find the first element to its right that is less than or equal to its value, there will be no duplication, because the subarray interval for the element at index $3$ becomes $(0, 6)$, and the subarray interval for the element at index $6$ is $(0, 7)$, which are not the same.

Back to this problem, we just need to traverse the array, for each element $arr[i]$, use a monotonic stack to find the first position $left[i]$ to its left that is less than $arr[i]$, and the first position $right[i]$ to its right that is less than or equal to $arr[i]$. The number of subarrays for which $arr[i]$ is the minimum is $(i - left[i]) \times (right[i] - i)$, then multiply by $arr[i]$, and finally sum these up.

Be aware of data overflow and modulo operations.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $arr$.

class Solution:
  def sumSubarrayMins(self, arr: List[int]) -> int:
    n = len(arr)
    left = [-1] * n
    right = [n] * n
    stk = []
    for i, v in enumerate(arr):
      while stk and arr[stk[-1]] >= v:
        stk.pop()
      if stk:
        left[i] = stk[-1]
      stk.append(i)

    stk = []
    for i in range(n - 1, -1, -1):
      while stk and arr[stk[-1]] > arr[i]:
        stk.pop()
      if stk:
        right[i] = stk[-1]
      stk.append(i)
    mod = 10**9 + 7
    return sum((i - left[i]) * (right[i] - i) * v for i, v in enumerate(arr)) % mod
class Solution {
  public int sumSubarrayMins(int[] arr) {
    int n = arr.length;
    int[] left = new int[n];
    int[] right = new int[n];
    Arrays.fill(left, -1);
    Arrays.fill(right, n);
    Deque<Integer> stk = new ArrayDeque<>();
    for (int i = 0; i < n; ++i) {
      while (!stk.isEmpty() && arr[stk.peek()] >= arr[i]) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        left[i] = stk.peek();
      }
      stk.push(i);
    }
    stk.clear();
    for (int i = n - 1; i >= 0; --i) {
      while (!stk.isEmpty() && arr[stk.peek()] > arr[i]) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        right[i] = stk.peek();
      }
      stk.push(i);
    }
    final int mod = (int) 1e9 + 7;
    long ans = 0;
    for (int i = 0; i < n; ++i) {
      ans += (long) (i - left[i]) * (right[i] - i) % mod * arr[i] % mod;
      ans %= mod;
    }
    return (int) ans;
  }
}
class Solution {
public:
  int sumSubarrayMins(vector<int>& arr) {
    int n = arr.size();
    vector<int> left(n, -1);
    vector<int> right(n, n);
    stack<int> stk;
    for (int i = 0; i < n; ++i) {
      while (!stk.empty() && arr[stk.top()] >= arr[i]) {
        stk.pop();
      }
      if (!stk.empty()) {
        left[i] = stk.top();
      }
      stk.push(i);
    }
    stk = stack<int>();
    for (int i = n - 1; i >= 0; --i) {
      while (!stk.empty() && arr[stk.top()] > arr[i]) {
        stk.pop();
      }
      if (!stk.empty()) {
        right[i] = stk.top();
      }
      stk.push(i);
    }
    long long ans = 0;
    const int mod = 1e9 + 7;
    for (int i = 0; i < n; ++i) {
      ans += 1LL * (i - left[i]) * (right[i] - i) * arr[i] % mod;
      ans %= mod;
    }
    return ans;
  }
};
func sumSubarrayMins(arr []int) (ans int) {
  n := len(arr)
  left := make([]int, n)
  right := make([]int, n)
  for i := range left {
    left[i] = -1
    right[i] = n
  }
  stk := []int{}
  for i, v := range arr {
    for len(stk) > 0 && arr[stk[len(stk)-1]] >= v {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      left[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  stk = []int{}
  for i := n - 1; i >= 0; i-- {
    for len(stk) > 0 && arr[stk[len(stk)-1]] > arr[i] {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      right[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  const mod int = 1e9 + 7
  for i, v := range arr {
    ans += (i - left[i]) * (right[i] - i) * v % mod
    ans %= mod
  }
  return
}
function sumSubarrayMins(arr: number[]): number {
  const n: number = arr.length;
  const left: number[] = Array(n).fill(-1);
  const right: number[] = Array(n).fill(n);
  const stk: number[] = [];
  for (let i = 0; i < n; ++i) {
    while (stk.length > 0 && arr[stk.at(-1)] >= arr[i]) {
      stk.pop();
    }
    if (stk.length > 0) {
      left[i] = stk.at(-1);
    }
    stk.push(i);
  }

  stk.length = 0;
  for (let i = n - 1; ~i; --i) {
    while (stk.length > 0 && arr[stk.at(-1)] > arr[i]) {
      stk.pop();
    }
    if (stk.length > 0) {
      right[i] = stk.at(-1);
    }
    stk.push(i);
  }

  const mod: number = 1e9 + 7;
  let ans: number = 0;
  for (let i = 0; i < n; ++i) {
    ans += ((((i - left[i]) * (right[i] - i)) % mod) * arr[i]) % mod;
    ans %= mod;
  }
  return ans;
}
use std::collections::VecDeque;

impl Solution {
  pub fn sum_subarray_mins(arr: Vec<i32>) -> i32 {
    let n = arr.len();
    let mut left = vec![-1; n];
    let mut right = vec![n as i32; n];
    let mut stk: VecDeque<usize> = VecDeque::new();

    for i in 0..n {
      while !stk.is_empty() && arr[*stk.back().unwrap()] >= arr[i] {
        stk.pop_back();
      }
      if let Some(&top) = stk.back() {
        left[i] = top as i32;
      }
      stk.push_back(i);
    }

    stk.clear();
    for i in (0..n).rev() {
      while !stk.is_empty() && arr[*stk.back().unwrap()] > arr[i] {
        stk.pop_back();
      }
      if let Some(&top) = stk.back() {
        right[i] = top as i32;
      }
      stk.push_back(i);
    }

    let MOD = 1_000_000_007;
    let mut ans: i64 = 0;
    for i in 0..n {
      ans +=
        ((((right[i] - (i as i32)) * ((i as i32) - left[i])) as i64) * (arr[i] as i64)) %
        MOD;
      ans %= MOD;
    }
    ans as i32
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文