返回介绍

solution / 1400-1499 / 1438.Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit / README_EN

发布于 2024-06-17 01:03:19 字数 22662 浏览 0 评论 0 收藏 0

1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit

中文文档

Description

Given an array of integers nums and an integer limit, return the size of the longest non-empty subarray such that the absolute difference between any two elements of this subarray is less than or equal to limit_._

 

Example 1:

Input: nums = [8,2,4,7], limit = 4
Output: 2 
Explanation: All subarrays are: 
[8] with maximum absolute diff |8-8| = 0 <= 4.
[8,2] with maximum absolute diff |8-2| = 6 > 4. 
[8,2,4] with maximum absolute diff |8-2| = 6 > 4.
[8,2,4,7] with maximum absolute diff |8-2| = 6 > 4.
[2] with maximum absolute diff |2-2| = 0 <= 4.
[2,4] with maximum absolute diff |2-4| = 2 <= 4.
[2,4,7] with maximum absolute diff |2-7| = 5 > 4.
[4] with maximum absolute diff |4-4| = 0 <= 4.
[4,7] with maximum absolute diff |4-7| = 3 <= 4.
[7] with maximum absolute diff |7-7| = 0 <= 4. 
Therefore, the size of the longest subarray is 2.

Example 2:

Input: nums = [10,1,2,4,7,2], limit = 5
Output: 4 
Explanation: The subarray [2,4,7,2] is the longest since the maximum absolute diff is |2-7| = 5 <= 5.

Example 3:

Input: nums = [4,2,2,2,4,4,2,2], limit = 0
Output: 3

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109
  • 0 <= limit <= 109

Solutions

Solution 1

from sortedcontainers import SortedList


class Solution:
  def longestSubarray(self, nums: List[int], limit: int) -> int:
    sl = SortedList()
    ans = j = 0
    for i, v in enumerate(nums):
      sl.add(v)
      while sl[-1] - sl[0] > limit:
        sl.remove(nums[j])
        j += 1
      ans = max(ans, i - j + 1)
    return ans
class Solution {
  public int longestSubarray(int[] nums, int limit) {
    TreeMap<Integer, Integer> tm = new TreeMap<>();
    int ans = 0, j = 0;
    for (int i = 0; i < nums.length; ++i) {
      tm.put(nums[i], tm.getOrDefault(nums[i], 0) + 1);
      while (tm.lastKey() - tm.firstKey() > limit) {
        tm.put(nums[j], tm.get(nums[j]) - 1);
        if (tm.get(nums[j]) == 0) {
          tm.remove(nums[j]);
        }
        ++j;
      }
      ans = Math.max(ans, i - j + 1);
    }
    return ans;
  }
}
class Solution {
public:
  int longestSubarray(vector<int>& nums, int limit) {
    multiset<int> s;
    int ans = 0, j = 0;
    for (int i = 0; i < nums.size(); ++i) {
      s.insert(nums[i]);
      while (*s.rbegin() - *s.begin() > limit) {
        s.erase(s.find(nums[j++]));
      }
      ans = max(ans, i - j + 1);
    }
    return ans;
  }
};
func longestSubarray(nums []int, limit int) (ans int) {
  tm := treemap.NewWithIntComparator()
  j := 0
  for i, v := range nums {
    if x, ok := tm.Get(v); ok {
      tm.Put(v, x.(int)+1)
    } else {
      tm.Put(v, 1)
    }
    for {
      a, _ := tm.Min()
      b, _ := tm.Max()
      if b.(int)-a.(int) > limit {
        if x, _ := tm.Get(nums[j]); x.(int) == 1 {
          tm.Remove(nums[j])
        } else {
          tm.Put(nums[j], x.(int)-1)
        }
        j++
      } else {
        break
      }
    }
    ans = max(ans, i-j+1)
  }
  return
}
function longestSubarray(nums: number[], limit: number): number {
  const ts = new TreapMultiSet<number>();
  let ans = 0;
  let j = 0;
  for (let i = 0; i < nums.length; ++i) {
    ts.add(nums[i]);
    while (ts.last() - ts.first() > limit) {
      ts.delete(nums[j++]);
    }
    ans = Math.max(ans, i - j + 1);
  }
  return ans;
}

type CompareFunction<T, R extends 'number' | 'boolean'> = (
  a: T,
  b: T,
) => R extends 'number' ? number : boolean;

interface ITreapMultiSet<T> extends Iterable<T> {
  add: (...value: T[]) => this;
  has: (value: T) => boolean;
  delete: (value: T) => void;

  bisectLeft: (value: T) => number;
  bisectRight: (value: T) => number;

  indexOf: (value: T) => number;
  lastIndexOf: (value: T) => number;

  at: (index: number) => T | undefined;
  first: () => T | undefined;
  last: () => T | undefined;

  lower: (value: T) => T | undefined;
  higher: (value: T) => T | undefined;
  floor: (value: T) => T | undefined;
  ceil: (value: T) => T | undefined;

  shift: () => T | undefined;
  pop: (index?: number) => T | undefined;

  count: (value: T) => number;

  keys: () => IterableIterator<T>;
  values: () => IterableIterator<T>;
  rvalues: () => IterableIterator<T>;
  entries: () => IterableIterator<[number, T]>;

  readonly size: number;
}

class TreapNode<T = number> {
  value: T;
  count: number;
  size: number;
  priority: number;
  left: TreapNode<T> | null;
  right: TreapNode<T> | null;

  constructor(value: T) {
    this.value = value;
    this.count = 1;
    this.size = 1;
    this.priority = Math.random();
    this.left = null;
    this.right = null;
  }

  static getSize(node: TreapNode<any> | null): number {
    return node?.size ?? 0;
  }

  static getFac(node: TreapNode<any> | null): number {
    return node?.priority ?? 0;
  }

  pushUp(): void {
    let tmp = this.count;
    tmp += TreapNode.getSize(this.left);
    tmp += TreapNode.getSize(this.right);
    this.size = tmp;
  }

  rotateRight(): TreapNode<T> {
    // eslint-disable-next-line @typescript-eslint/no-this-alias
    let node: TreapNode<T> = this;
    const left = node.left;
    node.left = left?.right ?? null;
    left && (left.right = node);
    left && (node = left);
    node.right?.pushUp();
    node.pushUp();
    return node;
  }

  rotateLeft(): TreapNode<T> {
    // eslint-disable-next-line @typescript-eslint/no-this-alias
    let node: TreapNode<T> = this;
    const right = node.right;
    node.right = right?.left ?? null;
    right && (right.left = node);
    right && (node = right);
    node.left?.pushUp();
    node.pushUp();
    return node;
  }
}

class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
  private readonly root: TreapNode<T>;
  private readonly compareFn: CompareFunction<T, 'number'>;
  private readonly leftBound: T;
  private readonly rightBound: T;

  constructor(compareFn?: CompareFunction<T, 'number'>);
  constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
  constructor(
    compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
    leftBound: any = -Infinity,
    rightBound: any = Infinity,
  ) {
    this.root = new TreapNode<T>(rightBound);
    this.root.priority = Infinity;
    this.root.left = new TreapNode<T>(leftBound);
    this.root.left.priority = -Infinity;
    this.root.pushUp();

    this.leftBound = leftBound;
    this.rightBound = rightBound;
    this.compareFn = compareFn;
  }

  get size(): number {
    return this.root.size - 2;
  }

  get height(): number {
    const getHeight = (node: TreapNode<T> | null): number => {
      if (node == null) return 0;
      return 1 + Math.max(getHeight(node.left), getHeight(node.right));
    };

    return getHeight(this.root);
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Returns true if value is a member.
   */
  has(value: T): boolean {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): boolean => {
      if (node == null) return false;
      if (compare(node.value, value) === 0) return true;
      if (compare(node.value, value) < 0) return dfs(node.right, value);
      return dfs(node.left, value);
    };

    return dfs(this.root, value);
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Add value to sorted set.
   */
  add(...values: T[]): this {
    const compare = this.compareFn;
    const dfs = (
      node: TreapNode<T> | null,
      value: T,
      parent: TreapNode<T>,
      direction: 'left' | 'right',
    ): void => {
      if (node == null) return;
      if (compare(node.value, value) === 0) {
        node.count++;
        node.pushUp();
      } else if (compare(node.value, value) > 0) {
        if (node.left) {
          dfs(node.left, value, node, 'left');
        } else {
          node.left = new TreapNode(value);
          node.pushUp();
        }

        if (TreapNode.getFac(node.left) > node.priority) {
          parent[direction] = node.rotateRight();
        }
      } else if (compare(node.value, value) < 0) {
        if (node.right) {
          dfs(node.right, value, node, 'right');
        } else {
          node.right = new TreapNode(value);
          node.pushUp();
        }

        if (TreapNode.getFac(node.right) > node.priority) {
          parent[direction] = node.rotateLeft();
        }
      }
      parent.pushUp();
    };

    values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
    return this;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Remove value from sorted set if it is a member.
   * If value is not a member, do nothing.
   */
  delete(value: T): void {
    const compare = this.compareFn;
    const dfs = (
      node: TreapNode<T> | null,
      value: T,
      parent: TreapNode<T>,
      direction: 'left' | 'right',
    ): void => {
      if (node == null) return;

      if (compare(node.value, value) === 0) {
        if (node.count > 1) {
          node.count--;
          node?.pushUp();
        } else if (node.left == null && node.right == null) {
          parent[direction] = null;
        } else {
          // 旋到根节点
          if (
            node.right == null ||
            TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
          ) {
            parent[direction] = node.rotateRight();
            dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
          } else {
            parent[direction] = node.rotateLeft();
            dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
          }
        }
      } else if (compare(node.value, value) > 0) {
        dfs(node.left, value, node, 'left');
      } else if (compare(node.value, value) < 0) {
        dfs(node.right, value, node, 'right');
      }

      parent?.pushUp();
    };

    dfs(this.root.left, value, this.root, 'left');
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Returns an index to insert value in the sorted set.
   * If the value is already present, the insertion point will be before (to the left of) any existing values.
   */
  bisectLeft(value: T): number {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): number => {
      if (node == null) return 0;

      if (compare(node.value, value) === 0) {
        return TreapNode.getSize(node.left);
      } else if (compare(node.value, value) > 0) {
        return dfs(node.left, value);
      } else if (compare(node.value, value) < 0) {
        return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
      }

      return 0;
    };

    return dfs(this.root, value) - 1;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Returns an index to insert value in the sorted set.
   * If the value is already present, the insertion point will be before (to the right of) any existing values.
   */
  bisectRight(value: T): number {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): number => {
      if (node == null) return 0;

      if (compare(node.value, value) === 0) {
        return TreapNode.getSize(node.left) + node.count;
      } else if (compare(node.value, value) > 0) {
        return dfs(node.left, value);
      } else if (compare(node.value, value) < 0) {
        return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
      }

      return 0;
    };
    return dfs(this.root, value) - 1;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
   */
  indexOf(value: T): number {
    const compare = this.compareFn;
    let isExist = false;

    const dfs = (node: TreapNode<T> | null, value: T): number => {
      if (node == null) return 0;

      if (compare(node.value, value) === 0) {
        isExist = true;
        return TreapNode.getSize(node.left);
      } else if (compare(node.value, value) > 0) {
        return dfs(node.left, value);
      } else if (compare(node.value, value) < 0) {
        return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
      }

      return 0;
    };
    const res = dfs(this.root, value) - 1;
    return isExist ? res : -1;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
   */
  lastIndexOf(value: T): number {
    const compare = this.compareFn;
    let isExist = false;

    const dfs = (node: TreapNode<T> | null, value: T): number => {
      if (node == null) return 0;

      if (compare(node.value, value) === 0) {
        isExist = true;
        return TreapNode.getSize(node.left) + node.count - 1;
      } else if (compare(node.value, value) > 0) {
        return dfs(node.left, value);
      } else if (compare(node.value, value) < 0) {
        return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
      }

      return 0;
    };

    const res = dfs(this.root, value) - 1;
    return isExist ? res : -1;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Returns the item located at the specified index.
   * @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
   */
  at(index: number): T | undefined {
    if (index < 0) index += this.size;
    if (index < 0 || index >= this.size) return undefined;

    const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
      if (node == null) return undefined;

      if (TreapNode.getSize(node.left) >= rank) {
        return dfs(node.left, rank);
      } else if (TreapNode.getSize(node.left) + node.count >= rank) {
        return node.value;
      } else {
        return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
      }
    };

    const res = dfs(this.root, index + 2);
    return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Find and return the element less than `val`, return `undefined` if no such element found.
   */
  lower(value: T): T | undefined {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
      if (node == null) return undefined;
      if (compare(node.value, value) >= 0) return dfs(node.left, value);

      const tmp = dfs(node.right, value);
      if (tmp == null || compare(node.value, tmp) > 0) {
        return node.value;
      } else {
        return tmp;
      }
    };

    const res = dfs(this.root, value) as any;
    return res === this.leftBound ? undefined : res;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Find and return the element greater than `val`, return `undefined` if no such element found.
   */
  higher(value: T): T | undefined {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
      if (node == null) return undefined;
      if (compare(node.value, value) <= 0) return dfs(node.right, value);

      const tmp = dfs(node.left, value);

      if (tmp == null || compare(node.value, tmp) < 0) {
        return node.value;
      } else {
        return tmp;
      }
    };

    const res = dfs(this.root, value) as any;
    return res === this.rightBound ? undefined : res;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
   */
  floor(value: T): T | undefined {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
      if (node == null) return undefined;
      if (compare(node.value, value) === 0) return node.value;
      if (compare(node.value, value) >= 0) return dfs(node.left, value);

      const tmp = dfs(node.right, value);
      if (tmp == null || compare(node.value, tmp) > 0) {
        return node.value;
      } else {
        return tmp;
      }
    };

    const res = dfs(this.root, value) as any;
    return res === this.leftBound ? undefined : res;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
   */
  ceil(value: T): T | undefined {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
      if (node == null) return undefined;
      if (compare(node.value, value) === 0) return node.value;
      if (compare(node.value, value) <= 0) return dfs(node.right, value);

      const tmp = dfs(node.left, value);

      if (tmp == null || compare(node.value, tmp) < 0) {
        return node.value;
      } else {
        return tmp;
      }
    };

    const res = dfs(this.root, value) as any;
    return res === this.rightBound ? undefined : res;
  }

  /**
   * @complexity `O(logn)`
   * @description
   * Returns the last element from set.
   * If the set is empty, undefined is returned.
   */
  first(): T | undefined {
    const iter = this.inOrder();
    iter.next();
    const res = iter.next().value;
    return res === this.rightBound ? undefined : res;
  }

  /**
   * @complexity `O(logn)`
   * @description
   * Returns the last element from set.
   * If the set is empty, undefined is returned .
   */
  last(): T | undefined {
    const iter = this.reverseInOrder();
    iter.next();
    const res = iter.next().value;
    return res === this.leftBound ? undefined : res;
  }

  /**
   * @complexity `O(logn)`
   * @description
   * Removes the first element from an set and returns it.
   * If the set is empty, undefined is returned and the set is not modified.
   */
  shift(): T | undefined {
    const first = this.first();
    if (first === undefined) return undefined;
    this.delete(first);
    return first;
  }

  /**
   * @complexity `O(logn)`
   * @description
   * Removes the last element from an set and returns it.
   * If the set is empty, undefined is returned and the set is not modified.
   */
  pop(index?: number): T | undefined {
    if (index == null) {
      const last = this.last();
      if (last === undefined) return undefined;
      this.delete(last);
      return last;
    }

    const toDelete = this.at(index);
    if (toDelete == null) return;
    this.delete(toDelete);
    return toDelete;
  }

  /**
   *
   * @complexity `O(logn)`
   * @description
   * Returns number of occurrences of value in the sorted set.
   */
  count(value: T): number {
    const compare = this.compareFn;
    const dfs = (node: TreapNode<T> | null, value: T): number => {
      if (node == null) return 0;
      if (compare(node.value, value) === 0) return node.count;
      if (compare(node.value, value) < 0) return dfs(node.right, value);
      return dfs(node.left, value);
    };

    return dfs(this.root, value);
  }

  *[Symbol.iterator](): Generator<T, any, any> {
    yield* this.values();
  }

  /**
   * @description
   * Returns an iterable of keys in the set.
   */
  *keys(): Generator<T, any, any> {
    yield* this.values();
  }

  /**
   * @description
   * Returns an iterable of values in the set.
   */
  *values(): Generator<T, any, any> {
    const iter = this.inOrder();
    iter.next();
    const steps = this.size;
    for (let _ = 0; _ < steps; _++) {
      yield iter.next().value;
    }
  }

  /**
   * @description
   * Returns a generator for reversed order traversing the set.
   */
  *rvalues(): Generator<T, any, any> {
    const iter = this.reverseInOrder();
    iter.next();
    const steps = this.size;
    for (let _ = 0; _ < steps; _++) {
      yield iter.next().value;
    }
  }

  /**
   * @description
   * Returns an iterable of key, value pairs for every entry in the set.
   */
  *entries(): IterableIterator<[number, T]> {
    const iter = this.inOrder();
    iter.next();
    const steps = this.size;
    for (let i = 0; i < steps; i++) {
      yield [i, iter.next().value];
    }
  }

  private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
    if (root == null) return;
    yield* this.inOrder(root.left);
    const count = root.count;
    for (let _ = 0; _ < count; _++) {
      yield root.value;
    }
    yield* this.inOrder(root.right);
  }

  private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
    if (root == null) return;
    yield* this.reverseInOrder(root.right);
    const count = root.count;
    for (let _ = 0; _ < count; _++) {
      yield root.value;
    }
    yield* this.reverseInOrder(root.left);
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文