返回介绍

solution / 1500-1599 / 1551.Minimum Operations to Make Array Equal / README_EN

发布于 2024-06-17 01:03:18 字数 3785 浏览 0 评论 0 收藏 0

1551. Minimum Operations to Make Array Equal

中文文档

Description

You have an array arr of length n where arr[i] = (2 * i) + 1 for all valid values of i (i.e., 0 <= i < n).

In one operation, you can select two indices x and y where 0 <= x, y < n and subtract 1 from arr[x] and add 1 to arr[y] (i.e., perform arr[x] -=1and arr[y] += 1). The goal is to make all the elements of the array equal. It is guaranteed that all the elements of the array can be made equal using some operations.

Given an integer n, the length of the array, return _the minimum number of operations_ needed to make all the elements of arr equal.

 

Example 1:

Input: n = 3
Output: 2
Explanation: arr = [1, 3, 5]
First operation choose x = 2 and y = 0, this leads arr to be [2, 3, 4]
In the second operation choose x = 2 and y = 0 again, thus arr = [3, 3, 3].

Example 2:

Input: n = 6
Output: 9

 

Constraints:

  • 1 <= n <= 104

Solutions

Solution 1: Mathematics

According to the problem description, the array $arr$ is an arithmetic sequence with the first term as $1$ and the common difference as $2$. Therefore, the sum of the first $n$ terms of the array is:

$$ \begin{aligned} S_n &= \frac{n}{2} \times (a_1 + a_n) \ &= \frac{n}{2} \times (1 + (2n - 1)) \ &= n^2 \end{aligned} $$

Since in one operation, one number is decreased by one and another number is increased by one, the sum of all elements in the array remains unchanged. Therefore, when all elements in the array are equal, the value of each element is $S_n / n = n$. Hence, the minimum number of operations required to make all elements in the array equal is:

$$ \sum_{i=0}^{\frac{n}{2}} (n - (2i + 1)) $$

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.

class Solution:
  def minOperations(self, n: int) -> int:
    return sum(n - (i << 1 | 1) for i in range(n >> 1))
class Solution {
  public int minOperations(int n) {
    int ans = 0;
    for (int i = 0; i < n >> 1; ++i) {
      ans += n - (i << 1 | 1);
    }
    return ans;
  }
}
class Solution {
public:
  int minOperations(int n) {
    int ans = 0;
    for (int i = 0; i < n >> 1; ++i) {
      ans += n - (i << 1 | 1);
    }
    return ans;
  }
};
func minOperations(n int) (ans int) {
  for i := 0; i < n>>1; i++ {
    ans += n - (i<<1 | 1)
  }
  return
}
function minOperations(n: number): number {
  let ans = 0;
  for (let i = 0; i < n >> 1; ++i) {
    ans += n - ((i << 1) | 1);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文