第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
历史的十一月板块涨幅
大盘又开始疯长了,还记嘚去年十一月吗 ?
#获得行业信息
def GetEquIndustry(universe,field):
num = 100
cnt_num = len(universe)/num
if cnt_num > 0:
df = pd.DataFrame({})
for i in range(cnt_num) :
sub_df = DataAPI.EquIndustryGet(secID=universe[i*num:(i+1)*num],field=field)
df = pd.concat([df,sub_df])
if (i+1)*num != len(universe):
sub_df = DataAPI.EquIndustryGet(secID=universe[(i+1)*num:],field=field)
df = pd.concat([df,sub_df])
else:
df = DataAPI.EquIndustryGet(secID=universe,field=field)
return df
from CAL.PyCAL import *
import pandas as pd
cal = Calendar('China.SSE')
universe = DataAPI.EquGet(equTypeCD='A')['secID'].tolist() #获得全A股的secID
id2nm = lambda x:x[0:6]
tk_list_A = map(id2nm,universe) #获得全A股的ticker
Ind_info = GetEquIndustry(universe = universe ,field=['ticker','secShortName','industryName2']) #获得个股的申万行业分类
Ind_info_gp = Ind_info.groupby('industryName2')#按照行业分组
Ind_tks_dic = {} #获得每个行业包含的股票
for ind_nm,sub_info in Ind_info_gp:
Ind_tks_dic[ind_nm] = sub_info.drop_duplicates('ticker')['ticker'].tolist()
from pandas import DataFrame,Series
from CAL.PyCAL import *
cal = Calendar('China.SSE')
field = ['ticker','secShortName','tradeDate','preClosePrice','closePrice','turnoverValue']
#时间轴(开始时间)
time = ['20141031', '20131031', '20121031', '20111031', '20101031']
#保存各个时间段的数据
Data_time = {}
#保存各个时间段的股票名字
tk_nm_dic ={}
# 时间稍慢
for s in time :
Data_time[s] = DataFrame()
for x in universe :
try :
data_temp = DataAPI.MktEqudAdjGet( secID = x , field =field , beginDate = s , endDate = cal.advanceDate(s,'1M', BizDayConvention.Following).strftime('%Y%m%d'))
data_temp['marketValue'] = DataAPI.MktEqudGet(secID = x ,field ='marketValue' , beginDate = s , endDate = cal.advanceDate(s,'1M', BizDayConvention.Following).strftime('%Y%m%d'))
Data_time[s] = pd.concat([Data_time[s],data_temp])
except :
continue
tk_nm_dic[s] = dict(zip(Data_time[s]['ticker'],Data_time[s]['secShortName'])) # 获得个股ticker与名称的对应字典
for s in Data_time.values() :
s['tradeDate'] = pd.to_datetime(s['tradeDate']) # 将tradeDate这一列的格式由string改为datetime
s['increase'] = s['closePrice']/s['preClosePrice'] # 获得个股每天的收益
# 股票数据统计
Stock_Data = {}
for s in Data_time.keys() :
Stock_dict = {'ticker':[],'income':[],'turnoverValue':[] ,'marketValue' :[]}
# 获得每个时间段的Data计算个股的收益和平均市值
for tk,sub_info in Data_time[s].groupby('ticker') :
income = sub_info['increase'].prod()-1 # 获得在这段时间内该股的涨幅
mkt_value = sub_info['marketValue'].sum()/len(sub_info)
turnoverValue_avg = sub_info['turnoverValue'].sum()/len(sub_info)
Stock_dict['ticker'].append(tk)
Stock_dict['income'].append(income)
Stock_dict['marketValue'].append(mkt_value)
Stock_dict['turnoverValue'].append(turnoverValue_avg)
# 返回时间为Key的个股数据
Stock_Data[s] = pd.DataFrame(Stock_dict)
# 行业数据统计
Output_dicy = {}
Output_dicy['industry'] = []
Output_dicy['Num'] = []
Output_dicy['Nov14'] = []
for ind,tks in Ind_tks_dic.items() :
for table in Stock_Data.keys() :
if not table in Output_dicy.keys() :
Output_dicy[table] = []
sub_Industry = Stock_Data[table][Stock_Data[table]['ticker'].isin(tks)]
# 成交量前三
bigstk = sub_Industry.sort(columns='turnoverValue',ascending=False)['ticker'][0:3].tolist()
# 行业指数收益
if not sub_Industry['marketValue'].sum() == 0 :
rtn_Industry = (sub_Industry['income']*sub_Industry['marketValue']).sum()/sub_Industry['marketValue'].sum()
Output_dicy[table].append(rtn_Industry)
if table == '20141031' :
Output_dicy['Nov14'].append(map(lambda x:tk_nm_dic['20141031'][x],bigstk))
if not sub_Industry['marketValue'].sum() == 0 :
#最新行业成分数量
Output_dicy['Num'].append(len(sub_Industry))
Output_dicy['industry'].append(ind)
Output_table = pd.DataFrame(Output_dicy)
去年十一月疯长的大盘
# 统计并显示
Out_put = Output_table.loc[:,['industry','Num','20101031','20111031','20121031','20131031','20141031','Nov14']]
Out_put.columns = [u'行业名称',u'该行业成分股数目(15年)',u'2010年十一月',u'2011年十一月',u'2012年十一月',u'2013年十一月',u'2014年十一月',u'2014年板块成交量前三']
Out_put[u'平均涨幅'] = (Out_put[u'2010年十一月']+Out_put[u'2011年十一月']+Out_put[u'2012年十一月']+Out_put[u'2013年十一月']+Out_put[u'2014年十一月']) / 5
print u'一共有%d个申万二级行业'%len(Out_put),u' : '
Out_put.sort(u'2014年十一月' , ascending = False).head(20)
一共有208个申万二级行业 :
行业名称 | 该行业成分股数目(15年) | 2010年十一月 | 2011年十一月 | 2012年十一月 | 2013年十一月 | 2014年十一月 | 2014年板块成交量前三 | 平均涨幅 | |
---|---|---|---|---|---|---|---|---|---|
97 | 资本市场服务 | 18 | -0.141082 | -0.152839 | -0.133307 | 0.098754 | 0.511463 | [中信证券, 海通证券, 兴业证券] | 0.036598 |
22 | 证券 | 20 | -0.142078 | -0.150951 | -0.129955 | 0.094950 | 0.493749 | [中信证券, 海通证券, 兴业证券] | 0.033143 |
107 | 综合金融 | 21 | -0.139421 | -0.148480 | -0.132800 | 0.095897 | 0.477825 | [中信证券, 海通证券, 兴业证券] | 0.030604 |
2 | 航空运输 | 6 | -0.179507 | -0.123943 | -0.094819 | 0.015406 | 0.406586 | [海南航空, 东方航空, 中信海直] | 0.004744 |
149 | 航空运输业 | 10 | -0.173271 | -0.107966 | -0.082920 | 0.015486 | 0.343224 | [海南航空, 东方航空, 中信海直] | -0.001089 |
38 | 保险业 | 3 | -0.095615 | -0.017941 | -0.035695 | 0.154288 | 0.323310 | [中国平安, 中国太保, 中国人寿] | 0.065669 |
153 | 保险 | 4 | -0.095476 | -0.018500 | -0.035806 | 0.154006 | 0.323234 | [中国平安, 中国太保, 中国人寿] | 0.065492 |
92 | 房屋建筑业 | 1 | 0.000000 | 0.000000 | -0.127193 | 0.202055 | 0.316129 | [高新发展] | 0.078198 |
112 | 高速公路 | 23 | -0.108908 | -0.088902 | -0.073154 | 0.052344 | 0.272050 | [广发证券, 厦门港务, 五洲交通] | 0.010686 |
193 | 石油加工、炼焦和核燃料加工业 | 18 | 0.007286 | -0.034520 | -0.127721 | 0.005377 | 0.258827 | [陕西黑猫, 上海石化, *ST华锦] | 0.021850 |
122 | 建筑安装业 | 1 | -0.113664 | -0.006221 | -0.139037 | 0.020833 | 0.213740 | [中关村] | -0.004870 |
139 | 基础建设 | 22 | -0.037736 | -0.088644 | 0.009290 | 0.011860 | 0.212001 | [中国中铁, 中国铁建, 中国交建] | 0.021354 |
202 | 农、林、牧、渔服务业 | 1 | -0.013893 | 0.032037 | -0.106501 | 0.055081 | 0.210865 | [丰乐种业] | 0.035518 |
113 | 房屋建设 | 4 | -0.046656 | -0.087118 | 0.006878 | 0.009602 | 0.202862 | [中国建筑, 上海建工, 宁波建工] | 0.017114 |
176 | 园区开发 | 18 | -0.042658 | -0.077632 | -0.073093 | -0.033278 | 0.200555 | [陆家嘴, 外高桥, 金融街] | -0.005221 |
39 | 租赁业 | 1 | -0.149817 | 0.011525 | -0.106517 | 0.043152 | 0.200312 | [渤海租赁] | -0.000269 |
82 | 土木工程建筑业 | 45 | -0.028200 | -0.077634 | -0.003929 | 0.004428 | 0.181418 | [中国建筑, 中国中铁, 中国铁建] | 0.015217 |
194 | 货币金融服务 | 16 | -0.060532 | -0.046490 | 0.017593 | 0.012884 | 0.181281 | [浦发银行, 兴业银行, 民生银行] | 0.020947 |
101 | 银行 | 16 | -0.060532 | -0.046490 | 0.017593 | 0.012884 | 0.181281 | [浦发银行, 兴业银行, 民生银行] | 0.020947 |
67 | 燃气生产和供应业 | 9 | -0.097077 | 0.016135 | -0.038805 | 0.005440 | 0.178853 | [大众公用, 重庆燃气, 申能股份] | 0.012909 |
五年间十一月平均涨幅
Out_put.sort(u'平均涨幅' , ascending = False).head(20)
行业名称 | 该行业成分股数目(15年) | 2010年十一月 | 2011年十一月 | 2012年十一月 | 2013年十一月 | 2014年十一月 | 2014年板块成交量前三 | 平均涨幅 | |
---|---|---|---|---|---|---|---|---|---|
92 | 房屋建筑业 | 1 | 0.000000 | 0.000000 | -0.127193 | 0.202055 | 0.316129 | [高新发展] | 0.078198 |
38 | 保险业 | 3 | -0.095615 | -0.017941 | -0.035695 | 0.154288 | 0.323310 | [中国平安, 中国太保, 中国人寿] | 0.065669 |
153 | 保险 | 4 | -0.095476 | -0.018500 | -0.035806 | 0.154006 | 0.323234 | [中国平安, 中国太保, 中国人寿] | 0.065492 |
35 | 林业 | 5 | 0.010244 | 0.117180 | 0.028619 | 0.012805 | 0.085120 | [平潭发展, 永安林业, 吉林森工] | 0.050794 |
200 | 运输设备 | 7 | 0.116078 | -0.056020 | 0.095749 | 0.071869 | 0.008633 | [晋西车轴, 北方创业, 康尼机电] | 0.047262 |
97 | 资本市场服务 | 18 | -0.141082 | -0.152839 | -0.133307 | 0.098754 | 0.511463 | [中信证券, 海通证券, 兴业证券] | 0.036598 |
202 | 农、林、牧、渔服务业 | 1 | -0.013893 | 0.032037 | -0.106501 | 0.055081 | 0.210865 | [丰乐种业] | 0.035518 |
22 | 证券 | 20 | -0.142078 | -0.150951 | -0.129955 | 0.094950 | 0.493749 | [中信证券, 海通证券, 兴业证券] | 0.033143 |
107 | 综合金融 | 21 | -0.139421 | -0.148480 | -0.132800 | 0.095897 | 0.477825 | [中信证券, 海通证券, 兴业证券] | 0.030604 |
123 | 铁路运输业 | 3 | -0.074811 | -0.032704 | 0.033269 | 0.058432 | 0.158774 | [大秦铁路, 广深铁路, 铁龙物流] | 0.028592 |
111 | 餐饮业 | 4 | 0.116088 | 0.030976 | -0.115720 | 0.094488 | 0.002694 | [*ST云网, 西安饮食, 全聚德] | 0.025705 |
188 | 互联网和相关服务 | 12 | 0.063492 | 0.059126 | -0.123481 | 0.001113 | 0.127137 | [东方财富, 鹏博士, 海虹控股] | 0.025477 |
182 | 电气自动化设备 | 30 | 0.181047 | 0.021313 | -0.121661 | 0.000477 | 0.045836 | [国电南瑞, 许继电气, 川仪股份] | 0.025402 |
20 | 专业技术服务业 | 9 | 0.173828 | -0.040446 | -0.119783 | 0.046313 | 0.057355 | [中材节能, 设计股份, 三联虹普] | 0.023453 |
193 | 石油加工、炼焦和核燃料加工业 | 18 | 0.007286 | -0.034520 | -0.127721 | 0.005377 | 0.258827 | [陕西黑猫, 上海石化, *ST华锦] | 0.021850 |
4 | 铁路运输 | 3 | -0.074811 | -0.032704 | 0.028185 | 0.057472 | 0.130967 | [大秦铁路, 广深铁路, 铁龙物流] | 0.021822 |
139 | 基础建设 | 22 | -0.037736 | -0.088644 | 0.009290 | 0.011860 | 0.212001 | [中国中铁, 中国铁建, 中国交建] | 0.021354 |
194 | 货币金融服务 | 16 | -0.060532 | -0.046490 | 0.017593 | 0.012884 | 0.181281 | [浦发银行, 兴业银行, 民生银行] | 0.020947 |
101 | 银行 | 16 | -0.060532 | -0.046490 | 0.017593 | 0.012884 | 0.181281 | [浦发银行, 兴业银行, 民生银行] | 0.020947 |
44 | 食品制造业 | 22 | 0.150009 | 0.017352 | -0.080203 | -0.045608 | 0.059697 | [伊利股份, 光明乳业, 花园生物] | 0.020249 |
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论