返回介绍

__slots__魔法

发布于 2019-08-08 13:05:06 字数 2632 浏览 1061 评论 0 收藏 0

在Python中,每个类都有实例属性。默认情况下Python用一个字典来保存一个对象的实例属性。这非常有用,因为它允许我们在运行时去设置任意的新属性。

然而,对于有着已知属性的小类来说,它可能是个瓶颈。这个字典浪费了很多内存。Python不能在对象创建时直接分配一个固定量的内存来保存所有的属性。因此如果你创建许多对象(我指的是成千上万个),它会消耗掉很多内存。
不过还是有一个方法来规避这个问题。这个方法需要使用__slots__来告诉Python不要使用字典,而且只给一个固定集合的属性分配空间。

这里是一个使用与不使用__slots__的例子:

  • 不使用 __slots__:

    class MyClass(object):
      def __init__(self, name, identifier):
          self.name = name
          self.identifier = identifier
          self.set_up()
      # ...
  • 使用 __slots__:

    class MyClass(object):
      __slots__ = ['name', 'identifier']
      def __init__(self, name, identifier):
          self.name = name
          self.identifier = identifier
          self.set_up()
      # ...

第二段代码会为你的内存减轻负担。通过这个技巧,有些人已经看到内存占用率几乎40%~50%的减少。

稍微备注一下,你也许需要试一下PyPy。它已经默认地做了所有这些优化。

以下你可以看到一个例子,它用IPython来展示在有与没有__slots__情况下的精确内存占用,感谢 https://github.com/ianozsvald/ipython_memory_usage

Python 3.4.3 (default, Jun  6 2015, 13:32:34)
Type "copyright", "credits" or "license" for more information.

IPython 4.0.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: import ipython_memory_usage.ipython_memory_usage as imu

In [2]: imu.start_watching_memory()
In [2] used 0.0000 MiB RAM in 5.31s, peaked 0.00 MiB above current, total RAM usage 15.57 MiB

In [3]: %cat slots.py
class MyClass(object):
        __slots__ = ['name', 'identifier']
        def __init__(self, name, identifier):
                self.name = name
                self.identifier = identifier

num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [3] used 0.2305 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 15.80 MiB

In [4]: from slots import *
In [4] used 9.3008 MiB RAM in 0.72s, peaked 0.00 MiB above current, total RAM usage 25.10 MiB

In [5]: %cat noslots.py
class MyClass(object):
        def __init__(self, name, identifier):
                self.name = name
                self.identifier = identifier

num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [5] used 0.1758 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 25.28 MiB

In [6]: from noslots import *
In [6] used 22.6680 MiB RAM in 0.80s, peaked 0.00 MiB above current, total RAM usage 47.95 MiB

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文