- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
各visualize功能 - table
- Count
count 聚合返回选中索引模式中元素的原始计数。 - Average
这个聚合返回一个数值字段的 average 。从下拉菜单选择一个字段。 - Sum
sum 聚合返回一个数值字段的总和。从下拉菜单选择一个字段。 - Min
min 聚合返回一个数值字段的最小值。从下拉菜单选择一个字段。 - Max
max 聚合返回一个数值字段的最大值。从下拉菜单选择一个字段。 - Unique Count
cardinality 聚合返回一个字段的去重数据值。从下拉菜单选择一个字段。 - Standard Deviation
extended stats 聚合返回一个数值字段数据的标准差。从下拉菜单选择一个字段。 - Percentile
percentile 聚合返回一个数值字段中值的百分比分布。从下拉菜单选择一个字段,然后在 Percentiles 框内指定范围。点击 X 移除一个百分比框,点击 + Add Percent 添加一个百分比框。 - Percentile Rank
percentile ranks 聚合返回一个数值字段中你指定值的百分位排名。从下拉菜单选择一个字段,然后在 Values 框内指定一到多个百分位排名值。点击 X 移除一个百分比框,点击 +Add 添加一个数值框。
你可以点击 + Add Aggregation 按键添加一个聚合。
数据表格的每行,叫做 buckets。你可以定义 buckets 来切割表格成行,或者切割表格成另一个表格。
每个 bucket 类型都支持以下聚合:
- Date Histogram
date histogram 基于数值字段创建,由时间组织起来。你可以指定时间片的间隔,单位包括秒,分,小时,天,星期,月,年。 - Histogram
标准 histogram 基于数值字段创建。为这个字段指定一个整数间隔。勾选 Show empty buckets 让直方图中包含空的间隔。 - Range
通过 range 聚合。你可以为一个数值字段指定一系列区间。点击 Add Range 添加一堆区间端点。点击红色 (x) 符号移除一个区间。 - Date Range
date range 聚合计算你指定的时间区间内的值。你可以使用 date math 表达式指定区间。点击 Add Range 添加新的区间端点。点击红色 (/) 符号移除区间。 - IPv4 Range
IPv4 range 聚合用来指定 IPv4 地址的区间。点击 Add Range 添加新的区间端点。点击红色 (/) 符号移除区间。 - Terms
terms 聚合允许你指定展示一个字段的首尾几个元素,排序方式可以是计数或者其他自定义的metric。 - Filters
你可以为数据指定一组 filters。你可以用 query string,也可以用 JSON 格式来指定过滤器,就像在 Discover 页的搜索栏里一样。点击 Add Filter 添加下一个过滤器。 - Significant Terms
展示实验性的 significant terms 聚合的结果。 - Geohash
geohash 聚合显示基于地理坐标的点。
一旦你定义好了一个 X 轴聚合。你可以继续定义子聚合来完善可视化效果。点击 + Add Sub Aggregation 添加子聚合,然后选择 Split Area 或者 Split Chart,然后从类型菜单中选择一个子聚合。
当一个图形中定义了多个聚合,你可以使用聚合类型右侧的上下箭头来改变聚合的优先级。
你可以点击 Advanced 链接显示更多有关聚合的自定义参数:
- Exclude Pattern
指定一个从结果集中排除掉的模式。 - Exclude Pattern Flags
排除模式的 Java flags 标准集。 - Include Pattern
指定一个从结果集中要包含的模式。 - Include Pattern Flags
包含模式的 Java flags 标准集。 - JSON Input
一个用来添加 JSON 格式属性的文本框,内容会合并进聚合的定义中,格式如下例:
{ "script" : "doc['grade'].value * 1.2" }
注意
Elasticsearch 1.4.3 及以后版本,这个函数需要你开启 dynamic Groovy scripting。
这些参数是否可用,依赖于你选择的聚合函数。
选择 view options 更改表格中如下方面:
- Per Page
这个输入框控制表格的翻页。默认值是每页 10 行。
多选框用来控制以下行为:
- Show metrics for every bucket/level
勾选此项用以显示每个 bucket 聚合的中间结果。 - Show partial rows
勾选此项显示没有数据的行。
注意
开启这些行为可能带来性能上的显著影响。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论