- 译者序
- 前言
- 第1章 问答环节
- 第2章 Python 如何运行程序
- 第3章 如何运行程序
- 第4章 介绍 Python 对象类型
- 第5章 数字
- 第6章 动态类型简介
- 第7章 字符串
- 第8章 列表与字典
- 第9章 元组、文件及其他
- 第10章 Python 语句简介
- 第11章 赋值、表达式和打印
- 第12章 if 测试和语法规则
- 第13章 while 和 for 循环
- 第14章 迭代器和解析,第一部分
- 第15章 文档
- 第16章 函数基础
- 第17章 作用域
- 第18章 参数
- 第19章 函数的高级话题
- 第20章 迭代和解析,第二部分
- 第21章 模块:宏伟蓝图
- 第22章 模块代码编写基础
- 第23章 模块包
- 第24章 高级模块话题
- 第25章 OOP:宏伟蓝图
- 第27章 更多实例
- 第28章 类代码编写细节
- 第29章 运算符重载
- 第30章 类的设计
- 第31章 类的高级主题
- 第32章 异常基础
- 第34章 异常对象
- 第35章 异常的设计
- 第36章 Unicode 和字节字符串
- 字符串基础知识
- Python 的字符串类型
- 文本和二进制文件
- Python 3.0 中的字符串应用
- 转换
- 编码 Unicode 字符串
- 编码非ASCII文本
- 编码和解码非ASCII文本
- 其他 Unicode 编码技术
- 转换编码
- 在 Python 2.6 中编码 Unicode 字符串
- 源文件字符集编码声明
- 使用 Python 3.0 Bytes 对象
- 序列操作
- 创建 bytes 对象的其他方式
- 混合字符串类型
- 使用 Python 3.0(和 Python 2.6)bytearray 对象
- 使用文本文件和二进制文件
- Python 3.0 中的文本和二进制模式
- 类型和内容错误匹配
- 使用 Unicode 文件
- 在 Python 3.0 中处理 BOM
- Python 2.6 中的 Unicode 文件
- Python 3.0 中其他字符串工具的变化
- Struct二进制数据模块
- pickle对象序列化模块
- XML解析工具
- 本章小结
- 本章习题
- 习题解答
- 第37章 管理属性
- 第38章 装饰器
- 第39章 元类
- 附录A 安装和配置
- 附录B 各部分练习题的解答
- 作者介绍
- 封面介绍
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
定制数据和行为
除了支持灵活的层级,异常类还提供了把额外状态信息存储为实例属性的功能。正如我们前面所见到的,内置异常超类提供了一个默认的构造函数,它自动把构造函数参数存储到一个名为args的实例元组属性中。尽管默认的构造函数对于很多情况都适用,但为了满足更多的定制需求,我们可以提供一个自己的构造函数。此外,类可以定义在处理器中使用的方法,来提供预先编码的异常处理逻辑。
提供异常细节
当引发一个异常的时候,可能会跨越任意的文件界限——触发异常的raise语句和捕获异常的try语句可能位于完全不同的模块文件中。在一个全局变量中存储额外的细节通常是不可行的,因为try语句可能不知道全局变量位于哪个文件中。在异常自身中传递额外的状态信息,这允许try语句更可靠地访问它。
使用类,这几乎是自动化的。正如我们已经看到的,当引发一个异常的时候,Python随着异常传递类实例对象。在try语句中的代码,可以通过在一个except处理器中的as关键字之后列出一个额外的变量,来访问引发的异常。这提供了一个自然的钩子,以用来为处理器提供数据和行为。
例如,解析数据文件的一个程序可能通过引发一个异常实例来表示一个格式化错误,而该实例用关于错误的额外细节来填充:
在这里的except子句中,对引发异常的时候所产生的实例的一个引用分配给了X变量。[1]这使得能够通过定制的构造函数来访问附加给该实例的属性。尽管我们可能依赖于内置超类的默认状态保持,它与我们的应用程序几乎不相关:
[1]正如前面所提到的,引发的实例对象通常作为sys.exc_info()调用的结果元组中的第二项是可用的——sys.exc_info()是返回有关最新引发的异常信息的一个工具。如果你没有在except子句中列出一个异常名称,但是仍然需要访问所发生的异常或者访问其附加的任何状态信息或方法,就必须使用这个接口。关于sys.exc_info的更多介绍在下一章给出。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论