返回介绍

solution / 0800-0899 / 0882.Reachable Nodes In Subdivided Graph / README_EN

发布于 2024-06-17 01:03:33 字数 8032 浏览 0 评论 0 收藏 0

882. Reachable Nodes In Subdivided Graph

中文文档

Description

You are given an undirected graph (the "original graph") with n nodes labeled from 0 to n - 1. You decide to subdivide each edge in the graph into a chain of nodes, with the number of new nodes varying between each edge.

The graph is given as a 2D array of edges where edges[i] = [ui, vi, cnti] indicates that there is an edge between nodes ui and vi in the original graph, and cnti is the total number of new nodes that you will subdivide the edge into. Note that cnti == 0 means you will not subdivide the edge.

To subdivide the edge [ui, vi], replace it with (cnti + 1) new edges and cnti new nodes. The new nodes are x1, x2, ..., xcnti, and the new edges are [ui, x1], [x1, x2], [x2, x3], ..., [xcnti-1, xcnti], [xcnti, vi].

In this new graph, you want to know how many nodes are reachable from the node 0, where a node is reachable if the distance is maxMoves or less.

Given the original graph and maxMoves, return _the number of nodes that are reachable from node _0_ in the new graph_.

 

Example 1:

Input: edges = [[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3
Output: 13
Explanation: The edge subdivisions are shown in the image above.
The nodes that are reachable are highlighted in yellow.

Example 2:

Input: edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], maxMoves = 10, n = 4
Output: 23

Example 3:

Input: edges = [[1,2,4],[1,4,5],[1,3,1],[2,3,4],[3,4,5]], maxMoves = 17, n = 5
Output: 1
Explanation: Node 0 is disconnected from the rest of the graph, so only node 0 is reachable.

 

Constraints:

  • 0 <= edges.length <= min(n * (n - 1) / 2, 104)
  • edges[i].length == 3
  • 0 <= ui < vi < n
  • There are no multiple edges in the graph.
  • 0 <= cnti <= 104
  • 0 <= maxMoves <= 109
  • 1 <= n <= 3000

Solutions

Solution 1

class Solution:
  def reachableNodes(self, edges: List[List[int]], maxMoves: int, n: int) -> int:
    g = defaultdict(list)
    for u, v, cnt in edges:
      g[u].append((v, cnt + 1))
      g[v].append((u, cnt + 1))
    q = [(0, 0)]
    dist = [0] + [inf] * n
    while q:
      d, u = heappop(q)
      for v, cnt in g[u]:
        if (t := d + cnt) < dist[v]:
          dist[v] = t
          q.append((t, v))
    ans = sum(d <= maxMoves for d in dist)
    for u, v, cnt in edges:
      a = min(cnt, max(0, maxMoves - dist[u]))
      b = min(cnt, max(0, maxMoves - dist[v]))
      ans += min(cnt, a + b)
    return ans
class Solution {
  public int reachableNodes(int[][] edges, int maxMoves, int n) {
    List<int[]>[] g = new List[n];
    Arrays.setAll(g, e -> new ArrayList<>());
    for (var e : edges) {
      int u = e[0], v = e[1], cnt = e[2] + 1;
      g[u].add(new int[] {v, cnt});
      g[v].add(new int[] {u, cnt});
    }
    int[] dist = new int[n];
    Arrays.fill(dist, 1 << 30);
    PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
    q.offer(new int[] {0, 0});
    dist[0] = 0;
    while (!q.isEmpty()) {
      var p = q.poll();
      int d = p[0], u = p[1];
      for (var nxt : g[u]) {
        int v = nxt[0], cnt = nxt[1];
        if (d + cnt < dist[v]) {
          dist[v] = d + cnt;
          q.offer(new int[] {dist[v], v});
        }
      }
    }
    int ans = 0;
    for (int d : dist) {
      if (d <= maxMoves) {
        ++ans;
      }
    }
    for (var e : edges) {
      int u = e[0], v = e[1], cnt = e[2];
      int a = Math.min(cnt, Math.max(0, maxMoves - dist[u]));
      int b = Math.min(cnt, Math.max(0, maxMoves - dist[v]));
      ans += Math.min(cnt, a + b);
    }
    return ans;
  }
}
class Solution {
public:
  int reachableNodes(vector<vector<int>>& edges, int maxMoves, int n) {
    using pii = pair<int, int>;
    vector<vector<pii>> g(n);
    for (auto& e : edges) {
      int u = e[0], v = e[1], cnt = e[2] + 1;
      g[u].emplace_back(v, cnt);
      g[v].emplace_back(u, cnt);
    }
    priority_queue<pii, vector<pii>, greater<pii>> q;
    q.emplace(0, 0);
    int dist[n];
    memset(dist, 0x3f, sizeof dist);
    dist[0] = 0;
    while (!q.empty()) {
      auto [d, u] = q.top();
      q.pop();
      for (auto& [v, cnt] : g[u]) {
        if (d + cnt < dist[v]) {
          dist[v] = d + cnt;
          q.emplace(dist[v], v);
        }
      }
    }
    int ans = 0;
    for (int& d : dist) ans += d <= maxMoves;
    for (auto& e : edges) {
      int u = e[0], v = e[1], cnt = e[2];
      int a = min(cnt, max(0, maxMoves - dist[u]));
      int b = min(cnt, max(0, maxMoves - dist[v]));
      ans += min(cnt, a + b);
    }
    return ans;
  }
};
func reachableNodes(edges [][]int, maxMoves int, n int) (ans int) {
  g := make([][]pair, n)
  for _, e := range edges {
    u, v, cnt := e[0], e[1], e[2]+1
    g[u] = append(g[u], pair{cnt, v})
    g[v] = append(g[v], pair{cnt, u})
  }
  dist := make([]int, n)
  for i := range dist {
    dist[i] = 1 << 30
  }
  dist[0] = 0
  q := hp{{0, 0}}
  for len(q) > 0 {
    p := heap.Pop(&q).(pair)
    d, u := p.v, p.i
    for _, nxt := range g[u] {
      v, cnt := nxt.i, nxt.v
      if t := d + cnt; t < dist[v] {
        dist[v] = t
        heap.Push(&q, pair{t, v})
      }
    }
  }
  for _, d := range dist {
    if d <= maxMoves {
      ans++
    }
  }
  for _, e := range edges {
    u, v, cnt := e[0], e[1], e[2]
    a := min(cnt, max(0, maxMoves-dist[u]))
    b := min(cnt, max(0, maxMoves-dist[v]))
    ans += min(cnt, a+b)
  }
  return
}

type pair struct{ v, i int }
type hp []pair

func (h hp) Len() int       { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].v < h[j].v }
func (h hp) Swap(i, j int)    { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)    { *h = append(*h, v.(pair)) }
func (h *hp) Pop() any      { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文