返回介绍

solution / 2400-2499 / 2426.Number of Pairs Satisfying Inequality / README_EN

发布于 2024-06-17 01:03:06 字数 6314 浏览 0 评论 0 收藏 0

2426. Number of Pairs Satisfying Inequality

中文文档

Description

You are given two 0-indexed integer arrays nums1 and nums2, each of size n, and an integer diff. Find the number of pairs (i, j) such that:

  • 0 <= i < j <= n - 1 and
  • nums1[i] - nums1[j] <= nums2[i] - nums2[j] + diff.

Return_ the number of pairs that satisfy the conditions._

 

Example 1:

Input: nums1 = [3,2,5], nums2 = [2,2,1], diff = 1
Output: 3
Explanation:
There are 3 pairs that satisfy the conditions:
1. i = 0, j = 1: 3 - 2 <= 2 - 2 + 1. Since i < j and 1 <= 1, this pair satisfies the conditions.
2. i = 0, j = 2: 3 - 5 <= 2 - 1 + 1. Since i < j and -2 <= 2, this pair satisfies the conditions.
3. i = 1, j = 2: 2 - 5 <= 2 - 1 + 1. Since i < j and -3 <= 2, this pair satisfies the conditions.
Therefore, we return 3.

Example 2:

Input: nums1 = [3,-1], nums2 = [-2,2], diff = -1
Output: 0
Explanation:
Since there does not exist any pair that satisfies the conditions, we return 0.

 

Constraints:

  • n == nums1.length == nums2.length
  • 2 <= n <= 105
  • -104 <= nums1[i], nums2[i] <= 104
  • -104 <= diff <= 104

Solutions

Solution 1: Binary Indexed Tree

We can transform the inequality in the problem to $nums1[i] - nums2[i] \leq nums1[j] - nums2[j] + diff$. Therefore, if we calculate the difference between the corresponding elements of the two arrays and get another array $nums$, the problem is transformed into finding the number of pairs in $nums$ that satisfy $nums[i] \leq nums[j] + diff$.

We can enumerate $j$ from small to large, find out how many numbers before it satisfy $nums[i] \leq nums[j] + diff$, and thus calculate the number of pairs. We can use a binary indexed tree to maintain the prefix sum, so we can find out how many numbers before it satisfy $nums[i] \leq nums[j] + diff$ in $O(\log n)$ time.

The time complexity is $O(n \times \log n)$.

class BinaryIndexedTree:
  def __init__(self, n):
    self.n = n
    self.c = [0] * (n + 1)

  @staticmethod
  def lowbit(x):
    return x & -x

  def update(self, x, delta):
    while x <= self.n:
      self.c[x] += delta
      x += BinaryIndexedTree.lowbit(x)

  def query(self, x):
    s = 0
    while x:
      s += self.c[x]
      x -= BinaryIndexedTree.lowbit(x)
    return s


class Solution:
  def numberOfPairs(self, nums1: List[int], nums2: List[int], diff: int) -> int:
    tree = BinaryIndexedTree(10**5)
    ans = 0
    for a, b in zip(nums1, nums2):
      v = a - b
      ans += tree.query(v + diff + 40000)
      tree.update(v + 40000, 1)
    return ans
class BinaryIndexedTree {
  private int n;
  private int[] c;

  public BinaryIndexedTree(int n) {
    this.n = n;
    c = new int[n + 1];
  }

  public static final int lowbit(int x) {
    return x & -x;
  }

  public void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += lowbit(x);
    }
  }

  public int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= lowbit(x);
    }
    return s;
  }
}

class Solution {
  public long numberOfPairs(int[] nums1, int[] nums2, int diff) {
    BinaryIndexedTree tree = new BinaryIndexedTree(100000);
    long ans = 0;
    for (int i = 0; i < nums1.length; ++i) {
      int v = nums1[i] - nums2[i];
      ans += tree.query(v + diff + 40000);
      tree.update(v + 40000, 1);
    }
    return ans;
  }
}
class BinaryIndexedTree {
public:
  int n;
  vector<int> c;

  BinaryIndexedTree(int _n)
    : n(_n)
    , c(_n + 1) {}

  void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += lowbit(x);
    }
  }

  int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= lowbit(x);
    }
    return s;
  }

  int lowbit(int x) {
    return x & -x;
  }
};

class Solution {
public:
  long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int diff) {
    BinaryIndexedTree* tree = new BinaryIndexedTree(1e5);
    long long ans = 0;
    for (int i = 0; i < nums1.size(); ++i) {
      int v = nums1[i] - nums2[i];
      ans += tree->query(v + diff + 40000);
      tree->update(v + 40000, 1);
    }
    return ans;
  }
};
type BinaryIndexedTree struct {
  n int
  c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
  c := make([]int, n+1)
  return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
  return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
  for x <= this.n {
    this.c[x] += delta
    x += this.lowbit(x)
  }
}

func (this *BinaryIndexedTree) query(x int) int {
  s := 0
  for x > 0 {
    s += this.c[x]
    x -= this.lowbit(x)
  }
  return s
}

func numberOfPairs(nums1 []int, nums2 []int, diff int) int64 {
  tree := newBinaryIndexedTree(100000)
  ans := 0
  for i := range nums1 {
    v := nums1[i] - nums2[i]
    ans += tree.query(v + diff + 40000)
    tree.update(v+40000, 1)
  }
  return int64(ans)
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文