- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
性能与测试 - generator方式
实际运行的时候这个插件是派不上用途的,但这个插件依然是非常重要的插件之一。因为每一个使用 ELK stack 的运维人员都应该清楚一个道理:数据是支持操作的唯一真理(否则你也用不着 ELK)。所以在上线之前,你一定会需要在自己的实际环境中,测试 Logstash 和 Elasticsearch 的性能状况。这时候,这个用来生成测试数据的插件就有用了!
配置示例
input {
generator {
count => 10000000
message => '{"key1":"value1","key2":[1,2],"key3":{"subkey1":"subvalue1"}}'
codec => json
}
}
插件的默认生成数据,message 内容是 “hello world”。你可以根据自己的实际需要这里来写其他内容。
使用方式
做测试有两种主要方式:
- 配合 LogStash::Outputs::Null
inputs/generator 是无中生有,output/null 则是锯嘴葫芦。事件流转到这里直接就略过,什么操作都不做。相当于只测试 Logstash 的 pipe 和 filter 效率。测试过程非常简单:
$ time ./bin/logstash -f generator_null.conf
real 3m0.864s
user 3m39.031s
sys 0m51.621s
- 使用 pv 命令配合 LogStash::Outputs::Stdout 和 LogStash::Codecs::Dots
上面的这种方式虽然想法挺好,不过有个小漏洞:logstash 是在 JVM 上运行的,有一个明显的启动时间,运行也有一段事件的预热后才算稳定运行。所以,要想更真实的反应 logstash 在长期运行时候的效率,还有另一种方法:
output {
stdout {
codec => dots
}
}
LogStash::Codecs::Dots 也是一个另类的 codec 插件,他的作用是:把每个 event 都变成一个点(.
)。这样,在输出的时候,就变成了一个一个的 .
在屏幕上。显然这也是一个为了测试而存在的插件。
下面就要介绍 pv 命令了。这个命令的作用,就是作实时的标准输入、标准输出监控。我们这里就用它来监控标准输出:
$ ./bin/logstash -f generator_dots.conf | pv -abt > /dev/null
2.2MiB 0:03:00 [12.5kiB/s]
可以很明显的看到在前几秒中,速度是 0 B/s,因为 JVM 还没启动起来呢。开始运行的时候,速度依然不快。慢慢增长到比较稳定的状态,这时候的才是你需要的数据。
这里单位是 B/s,但是因为一个 event 就输出一个 .
,也就是 1B。所以 12.5kiB/s 就相当于是 12.5k event/s。
注:如果你在 CentOS 上通过 yum 安装的 pv 命令,版本较低,可能还不支持 -a 参数。单纯靠 -bt 参数看起来还是有点累的。
如果你要测试的是 input 插件的效率,方法也是类似的。此外,如果不想使用额外而且可能低版本的 pv 命令,通过 logstash-filter-metric 插件也可以做到类似的效果,官方博客中对此有详细阐述,建议大家阅读。
额外的话
既然单独花这么一节来说测试,这里想额外谈谈一个很常见的话题: ELK 的性能怎么样?
其实这压根就是一个不正确的提问。ELK 并不是一个软件而是一个并不耦合的套件。所以,我们需要分拆开讨论这三个软件的性能如何?怎么优化?
LogStash 的性能,是最让新人迷惑的地方。因为 LogStash 本身并不维护队列,所以整个日志流转中任意环节的问题,都可能看起来像是 LogStash 的问题。这里,需要熟练使用本节说的测试方法,针对自己的每一段配置,都确定其性能。另一方面,就是本书之前提到过的,LogStash 给自己的线程都设置了单独的线程名称,你可以在
top -H
结果中查看具体线程的负载情况。Elasticsearch 的性能。这里最需要强调的是:Elasticsearch 是一个分布式系统。从来没有分布式系统要跟人比较单机处理能力的说法。所以,更需要关注的是:在确定的单机处理能力的前提下,性能是否能做到线性扩展。当然,这不意味着说提高处理能力只能靠加机器了——有效利用 mapping API 是非常重要的。不过暂时就在这里讲述了。
Kibana 的性能。通常来说,Kibana 只是一个单页 Web 应用,只需要 nginx 发布静态文件即可,没什么性能问题。页面加载缓慢,基本上是因为 Elasticsearch 的请求响应时间本身不够快导致的。不过一定要细究的话,也能找出点 Kibana 本身性能相关的话题:因为 Kibana3 默认是连接固定的一个 ES 节点的 IP 端口的,所以这里会涉及一个浏览器的同一 IP 并发连接数的限制。其次,就是 Kibana 用的 AngularJS 使用了 Promise.then 的方式来处理 HTTP 请求响应。这是异步的。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论