返回介绍

solution / 2100-2199 / 2192.All Ancestors of a Node in a Directed Acyclic Graph / README

发布于 2024-06-17 01:03:09 字数 6348 浏览 0 评论 0 收藏 0

2192. 有向无环图中一个节点的所有祖先

English Version

题目描述

给你一个正整数 n ,它表示一个 有向无环图 中节点的数目,节点编号为 0 到 n - 1 (包括两者)。

给你一个二维整数数组 edges ,其中 edges[i] = [fromi, toi] 表示图中一条从 fromi 到 toi 的单向边。

请你返回一个数组 answer,其中_ _answer[i]是第 i 个节点的所有 祖先 ,这些祖先节点 升序 排序。

如果 u 通过一系列边,能够到达 v ,那么我们称节点 u 是节点 v 的 祖先 节点。

 

示例 1:

输入:n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
输出:[[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
解释:
上图为输入所对应的图。
- 节点 0 ,1 和 2 没有任何祖先。
- 节点 3 有 2 个祖先 0 和 1 。
- 节点 4 有 2 个祖先 0 和 2 。
- 节点 5 有 3 个祖先 0 ,1 和 3 。
- 节点 6 有 5 个祖先 0 ,1 ,2 ,3 和 4 。
- 节点 7 有 4 个祖先 0 ,1 ,2 和 3 。

示例 2:

输入:n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
输出:[[],[0],[0,1],[0,1,2],[0,1,2,3]]
解释:
上图为输入所对应的图。
- 节点 0 没有任何祖先。
- 节点 1 有 1 个祖先 0 。
- 节点 2 有 2 个祖先 0 和 1 。
- 节点 3 有 3 个祖先 0 ,1 和 2 。
- 节点 4 有 4 个祖先 0 ,1 ,2 和 3 。

 

提示:

  • 1 <= n <= 1000
  • 0 <= edges.length <= min(2000, n * (n - 1) / 2)
  • edges[i].length == 2
  • 0 <= fromi, toi <= n - 1
  • fromi != toi
  • 图中不会有重边。
  • 图是 有向无环 的。

解法

方法一:BFS

我们先根据二维数组 $edges$ 构建邻接表 $g$,其中 $g[i]$ 表示节点 $i$ 的所有后继节点。

然后我们从小到大枚举节点 $i$ 作为祖先节点,使用 BFS 搜索节点 $i$ 的所有后继节点,把节点 $i$ 加入这些后继节点的祖先列表中。

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 是节点数。

class Solution:
  def getAncestors(self, n: int, edges: List[List[int]]) -> List[List[int]]:
    def bfs(s: int):
      q = deque([s])
      vis = {s}
      while q:
        i = q.popleft()
        for j in g[i]:
          if j not in vis:
            vis.add(j)
            q.append(j)
            ans[j].append(s)

    g = defaultdict(list)
    for u, v in edges:
      g[u].append(v)
    ans = [[] for _ in range(n)]
    for i in range(n):
      bfs(i)
    return ans
class Solution {
  private int n;
  private List<Integer>[] g;
  private List<List<Integer>> ans;

  public List<List<Integer>> getAncestors(int n, int[][] edges) {
    g = new List[n];
    this.n = n;
    Arrays.setAll(g, i -> new ArrayList<>());
    for (var e : edges) {
      g[e[0]].add(e[1]);
    }
    ans = new ArrayList<>();
    for (int i = 0; i < n; ++i) {
      ans.add(new ArrayList<>());
    }
    for (int i = 0; i < n; ++i) {
      bfs(i);
    }
    return ans;
  }

  private void bfs(int s) {
    Deque<Integer> q = new ArrayDeque<>();
    q.offer(s);
    boolean[] vis = new boolean[n];
    vis[s] = true;
    while (!q.isEmpty()) {
      int i = q.poll();
      for (int j : g[i]) {
        if (!vis[j]) {
          vis[j] = true;
          q.offer(j);
          ans.get(j).add(s);
        }
      }
    }
  }
}
class Solution {
public:
  vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) {
    vector<int> g[n];
    for (auto& e : edges) {
      g[e[0]].push_back(e[1]);
    }
    vector<vector<int>> ans(n);
    auto bfs = [&](int s) {
      queue<int> q;
      q.push(s);
      bool vis[n];
      memset(vis, 0, sizeof(vis));
      vis[s] = true;
      while (q.size()) {
        int i = q.front();
        q.pop();
        for (int j : g[i]) {
          if (!vis[j]) {
            vis[j] = true;
            ans[j].push_back(s);
            q.push(j);
          }
        }
      }
    };
    for (int i = 0; i < n; ++i) {
      bfs(i);
    }
    return ans;
  }
};
func getAncestors(n int, edges [][]int) [][]int {
  g := make([][]int, n)
  for _, e := range edges {
    g[e[0]] = append(g[e[0]], e[1])
  }
  ans := make([][]int, n)
  bfs := func(s int) {
    q := []int{s}
    vis := make([]bool, n)
    vis[s] = true
    for len(q) > 0 {
      i := q[0]
      q = q[1:]
      for _, j := range g[i] {
        if !vis[j] {
          vis[j] = true
          q = append(q, j)
          ans[j] = append(ans[j], s)
        }
      }
    }
  }
  for i := 0; i < n; i++ {
    bfs(i)
  }
  return ans
}
function getAncestors(n: number, edges: number[][]): number[][] {
  const g: number[][] = Array.from({ length: n }, () => []);
  for (const [u, v] of edges) {
    g[u].push(v);
  }
  const ans: number[][] = Array.from({ length: n }, () => []);
  const bfs = (s: number) => {
    const q: number[] = [s];
    const vis: boolean[] = Array.from({ length: n }, () => false);
    vis[s] = true;
    while (q.length) {
      const i = q.shift()!;
      for (const j of g[i]) {
        if (!vis[j]) {
          vis[j] = true;
          ans[j].push(s);
          q.push(j);
        }
      }
    }
  };
  for (let i = 0; i < n; ++i) {
    bfs(i);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文